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ABSTRACT

The recent development of analytical tools to extract information regarding hu-

man demographic history from genetic data has generated interest from a range of

scientific disciplines. From an anthropological perspective, one goal is to reconcile the

palaeontological record with the results of population genetic studies. However, inves-

tigation of demographic history is relevant beyond the general interest in elucidating

our history as a species.

Historic changes in population size play a pivotal role in shaping neutral patterns

of genetic variation. Having an understanding of what constitutes “neutral” variation

is critical for determining whether selection is acting on a locus of interest. Addi-

tionally, demographic history influences genome-wide levels of linkage disequilibrium

(LD), which has implications for the construction and evaluation of disease association

studies. Demographic effects on LD also pose a challenge for methods of estimating

the population recombination rate, as a standard model of constant population size

is typically assumed for such methods.

An ideal method of demographic inference will utilize as much of the genetic data

as possible, while maintaining computational feasibility. In this dissertation, several

xi
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demographic inference methods are presented, each summarizing and analyzing the

data in a unique way. Application of these methods to human data reveals population-

specific demographic histories which often exclude the standard model of constant

population size.



CHAPTER 1

INTRODUCTION TO DEMOGRAPHIC INFERENCE

1.1 Significance of human demographic history

Human demographic history, which includes historic changes in population size,

is of interest to researchers across a range of disciplines. From a population genetics

perspective, there is much interest in determining what constitutes a neutral pattern

of genetic variation. Identifying deviation from neutral patterns of variation is one

way to assess whether natural selection may have been acting on a locus of interest

(Sabeti et al. 2002; Akey et al. 2004). Therefore, accurate assessment of the de-

mographic history of a population may contribute to more accurate detection of loci

under selection.

Demographic history also influences the extent of linkage disequilibrium (LD)

across the genome. Disease association mapping studies rely on LD between a genetic

marker and a variant associated with disease; therefore, demographic history has

implications for the density of markers that would be required for association mapping

efforts (Reich et al. 2001). Specifically, it may be desirable to utilize a population

1
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that has extended tracts of LD (perhaps due to a population bottleneck) for genome-

wide association studies while choosing a population with neutral patterns of LD for

fine-scale association mapping once a region of interest has been identified.

An additional consideration is the effect of demographic history on estimation of

the population recombination rate. Current methods assume a constant population

size when estimating ρ (= 4Nr, where N is the effective population size, and r

is the recombination rate per generation). It has been shown that deviations from

neutrality (e.g. population size changes, population structure, or migration) influence

the accuracy of ρ estimates when standard approximate likelihood methods are used

(Smith and Fearnhead 2005).

There is also much interest in gaining a greater understanding of human history by

reconciling demographic information gleaned from population genetic data with the

palaeontological record. It has been hypothesized that a bottleneck in non-African

populations marked the exodus of anatomically modern humans out of Africa (Harp-

ending and Rogers 2000; Reich et al. 2001). The fossil record places the most

ancient modern human remains in Sub-Saharan Africa at 160 kya (White et al.

2003; Clark et al. 2003), with dispersal to Eurasia occurring approximately 60 kya

(Mellars 2006).

Some fundamental questions regarding human demographic history include:

• How do historic population size-change events influence contemporary patterns

of genetic variation?

• How can we use these contemporary patterns of variation to learn something

about a population’s demographic history?

• Can observed patterns of variability be explained by simple population size-

change models?
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The subsequent information and research presented in this dissertation aim to address

these questions by describing the effect of demographic history on various measures of

genetic variability, introducing unique demographic inference methods, and applying

these methods to a number of population-specific genetic data sets.

1.2 Demographic information in genetic data

Observed patterns of genetic variation contain information concerning the demo-

graphic history of a population. This variation can be usefully summarized in a

number of ways including the pairwise differences between sequences and the number

of segregating sites. Watterson (1975) showed that the expected distributions of

these quantities under a model of a single, randomly mating, diploid population of

constant effective population size can easily be calculated. In the absence of recombi-

nation, the number of pairwise differences between two randomly chosen haplotypes

has approximately a geometric distribution, while the expected number of segregating

sites (S) in a sample can be calculated by

E(S) =
n−1∑

i=1
E(Si) = θ

n−1∑

i=1

1

i
(1.1)

where θ = 4Neµ, Ne is the effective number of diploid individuals in the population,

µ is the mutation rate per generation, and Si is the number of segregating sites at

frequency i in the sample.

Tajima (1989a) used models of instantaneous population size change to illustrate

that both the mean number of pairwise differences and the expected number of seg-

regating sites are influenced by such changes, with models of growth increasing both

quantities and scenarios including a population bottleneck decreasing both quantities.
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Slatkin and Hudson (1991) examine a model of exponential growth at a constant

rate to show that distributions of pairwise differences under this type of model resem-

ble a Poisson distribution, differing from the geometric-like distribution that would

be expected under the constant size model examined by Watterson (1975) above.

Rogers and Harpending (1992) also examine the effect of growth and bottleneck

events on the mismatch distribution, finding that both scenarios produce waves in the

distribution that travel at a predictable rate depending upon the time of the event.

The differing expected values or distributions of both pairwise differences and seg-

regating sites under disparate models of population history indicate that these data

summaries are potentially useful for detecting departures from the model of constant

population size.

The frequency spectrum of segregating sites is also influenced by historic changes

in population size. The frequency spectrum under a constant population size model

can be determined by equation 1.1. In general, models of population growth or bot-

tlenecks tend to skew the frequency spectrum toward low- or intermediate-frequency

variants, respectively. Tajima’s D (Tajima 1989b) is a summary statistic based on the

frequency spectrum that is the difference between θ estimated by average heterozygos-

ity (θπ) and θ estimated based on the number of segregating sites by using equation

1.1 (θw). When a population is at equilibrium, the expected value of Tajima’s D is

0. However, under growth scenarios, the rapid influx of new alleles causes θw to grow

faster than θπ, leading to a negative value of Tajima’s D. Likewise, under bottleneck

scenarios, the loss of rare alleles contributes to a positive value of Tajima’s D. Such

trends in the value of Tajima’s D allow for detection of deviation from the standard

neutral model and also for parameter estimation, as described later.

An additional feature of genetic variation affected by demographic history is the

extent of linkage disequilibrium (LD) across the genome. From a coalescent perspec-
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tive, observed levels of polymorphism are due to an accumulation of mutations along

the branches of the gene trees of the sampled sequences. Since tightly linked loci will

have correlated genealogies, the allelic states of these linked loci will be in LD, while

those of distant loci will be effectively independent (Nordborg and Tavare 2002).

Therefore, demographic events will have an impact on levels of LD by influencing the

branch lengths on which mutations have accumulated. Generally, simple scenarios

of population growth tend to decrease levels of LD while bottlenecks or population

structure lead to an increase in observed LD (Reich et al. 2001; Pritchard and

Przeworski 2001).

In humans, studies of many data sets have revealed deviation from the standard

constant population size model. Early work focused on the distribution of pairwise

differences in mitochondrial and Y-chromosome data (Rogers and Harpending

1992; Harpending et al. 1998). Evidence for population expansion is also observed in

studies of microsatellite loci where the observed allele-size variance and homozygosity

are inconsistent with constant population size (Di Rienzo et al. 1998; Kimmel et al.

1998). More recently, studies of single-nucleotide polymorphisms (SNPs) in autosomal

loci have also revealed incompatibility with a constant population size model based on

either summary statistics such as Tajima’s D (Pluzhinikov et al. 2002; Wall and

Przeworski 2000), levels of LD (Reich et al. 2001), or the full frequency spectrum

(Polanski and Kimmel 2003; Marth et al. 2004). Such results have prompted

researchers to investigate not only whether a model of constant population size can

be rejected, but also what particular model and combination of parameter values for

a given model provide the best fit to the data.
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1.3 Approaches to demographic inference

Some parameters of interest when addressing questions of demographic history

include the times at which putative population size changes occurred, the growth

rate, the ancestral effective population size (NA), the current effective population

size (Ne), and any intermediate population sizes. A number of methods have been

employed in the attempt to estimate these and other demographic parameters. Basic

estimates of Ne can be made from summary statistics such as the observed number

of segregating sites using equation 1.1 above, but in most cases more sophisticated

analyses are required.

One important class of estimators are those that result from likelihood-based in-

ference. This type of analysis assumes that the observed data is a single random

realization of a process that can be explained by a model with unknown parameters.

The estimated parameter values are then taken to be those that maximize the like-

lihood of the observed data. Full-likelihood methods utilize all of the information

contained in a data set, often at significant computational expense. Such methods

have been applied to data sets consisting of loci that are not subject to recombination

(Beerli and Felsenstein 2001; Nielsen 1999; Kuhner et al. 1998).

Related to the maximum likelihood methods are those that make use of a Bayesian

framework, which requires that a prior distribution of model parameters be specified.

The posterior distribution is then the likelihood of the observed data at particular

parameter values weighted by the prior distribution. This type of analysis allows

one to incorporate information that may have been gleaned from previous studies

or anthropological sources (Stephens 2001). Examples of such analyses include

estimation of coalescence times (S Tavare and Donnelly 1997), recombination

rates (Nielsen 1999), mutation rates (Wilson and Balding 1998), and population
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size-change parameters (Thornton and Andolfatto 2006).

To avoid the computational burden of full-likelihood methods, DNA sequence

data may be summarized prior to analysis, sacrificing information content for compu-

tational feasibility. Coalescent simulations may be used to determine whether various

demographic scenarios are compatible with observed values of summary statistics.

Such statistics could include summaries of the frequency spectrum such as Tajima’s

D (Pluzhinikov et al. 2002; Wall and Przeworski 2000), summaries of linkage

disequilibrium such as D′ (Reich et al. 2001), or combinations of summary statistics

as described in Chapter 3. Additionally, Chapters 2 and 4 describe maximum likeli-

hood methods that are applied to the full frequency spectrum of either unlinked or

linked sites.

Despite the range of methods available for demographic inference, parameter es-

timation is not without complications. Star-like gene genealogies and a correspond-

ing excess of low frequency variants characteristic of population growth can also be

produced by selective sweeps; likewise, population contraction can mimic balancing

selection by maintaining several alleles at intermediate frequencies in a given locus

(Harpending et al. 1998). Therefore, less confounded estimates of demographic

parameters may be made by analyzing data from noncoding regions which are less

likely to be under natural selection (Pluzhinikov et al. 2002). An additional prob-

lem arises when a model or test statistic requires knowledge of genetic parameter

values that are not known or are heterogeneous between loci. One approach to this

issue in simulation-based studies is to treat the uncertain quantities as random vari-

ables which are then drawn from probability distributions with means corresponding

to genome-wide averages (Pluzhinikov et al. 2002).
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1.4 Summary of chapter contents

The parameter estimation methods described in the following chapters seek to

incorporate as much of the observed genetic data as possible into demographic analy-

ses while preserving computational feasibility. Application of these methods to both

simulated and empirical data sets highlights the effects of population history on ob-

served patterns of genetic variability and contributes to the construction of more

accurate models of human demographic history, as the following analyses indicate

that the constant population size model is often incompatible with observed patterns

of variation.

Chapter 2 details a maximum likelihood approach to infer demographic history

from the frequency spectrum of unlinked polymorphic sites. A method is also pre-

sented by which this approach may be adapted to accommodate data comprised of

linked SNPs. Simulations reveal that large amounts of data (either large sample

size or a large number of segregating sites) are required to make accurate inferences

regarding demographic history. Additionally, accuracy is highly depended on the de-

mographic scenario, with estimates improving with more ancient time of growth onset

and smaller magnitude of growth. Application of this method to an African data set

suggests compatibility with both constant population size as well as a range of re-

cent and ancient growth scenarios, while a European data set suggests a bottlenecked

history, with an 85% reduction in population size occurring ∼30,000 years ago.

Chapter 3 presents a demographic inference method that incorporates multiple as-

pects of genetic data, including the average number of segregating sites per locus (S̄),

the average value of Tajima’s D (D̄) (Tajima 1989b), and the population recombina-

tion rate as estimated by ρ̂ (Hudson 2001), into a single combined summary statistic.

Simulations illustrate that this combined summary statistic is more powerful than an



9

individual summary statistic (D̄, S̄, or ρ̂) in rejecting the null hypothesis of constant

population size. Individual summary statistics of both an Italian and a Chinese data

set are incompatible with the standard constant population size model. However, the

combined summary statistics of both populations suggest compatibility with a range

of bottleneck scenarios, ranging from a severe, shorter-lived reduction in population

size beginning 20,000 years ago to a mild, longer-lasting bottleneck beginning 120,000

years ago.

Chapter 4 introduces a maximum-likelihood method of demographic inference that

directly incorporates linkage between sites into the analysis. Unlike the method de-

scribed in Chapter 2, which treats all segregating sites as independent and then adjusts

confidence intervals to account for linkage post hoc, this method utilizes coalescent

simulations with recombination to determine the probability of observed joint fre-

quency spectra under a variety of demographic scenarios. Application of this method

to previously analyzed data reveals generally concordant results, with this method

producing smaller confidence intervals around the maximum likelihood estimates.

Finally, Chapter 5 suggests a method by which demographic information may be

incorporated into estimation of the population recombination rate. Simulations illus-

trate that values of ρ̂ (= 4NAr) are overestimated under growth scenarios and under-

estimated under bottleneck scenarios when estimates are made assuming the standard

constant population size model. The bias in ρ̂ can be eliminated by incorporating the

correct demographic model. Additionally, θ̂w
ρ̂ does not provide an unbiased estimate

of the ratio of the mutation to recombination rate (µ
r ) under changing population size

scenarios.

Chapters 2-4 of this dissertation are previously published or submitted manuscripts.

Chapter 2 is from Adams and Hudson (2004), and Chapter 3 is from Voight et al.

(2005). In Chapter 3, programs were adapted jointly by B. Voight and myself, and
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analyses were equally split between B. Voight and myself. Additionally, the data sets

analyzed in Chapter 3 were generated by L. Frisse and Y. Qian. Chapter 4 has been

submitted for publication in Genetics.



CHAPTER 2

INFERENCE USING THE FREQUENCY SPECTRUM

2.1 Introduction

Patterns of genetic variation in contemporary populations can be used to make

inferences about past population size changes. Ideally, likelihood methods using the

full data would be applied to make such inferences. For the case of DNA sequence

polymorphism and where no recombination occurs between the variable sites, meth-

ods are available for carrying out such inferences (Beerli and Felsenstein 2001;

Kuhner et al. 1998; Nielsen 1999). With incomplete linkage between sites, such ap-

proaches are frequently computationally infeasible. An exception is the case in which

only two chromosomes are sampled at each locus, where Marth et al. (2003) have

shown that maximum likelihood methods are feasible. These computational difficul-

ties have led to the use of summary statistics such as Tajima’s D (Tajima 1989b) for

making inferences about past demography. For example, Wall and Przeworski

(2000) and Pluzhinikov et al. (2002) tested compatibility between observed values

of Tajima’s D and values observed in simulations under constant-size and alternative

11
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demographic scenarios. Weiss and von Haeseler (1998) also focused on sum-

maries of the data by implementing a likelihood approach based on mean pairwise

differences and segregating sites for a model of complete linkage.

With free recombination between sites, the problem is greatly simplified. In this

case, sites can be considered to be statistically independent of each other and the data

are completely characterized by the number of polymorphic sites and the frequency

spectrum. That is, we can represent the full data by m = (m0,m1,m2,mn−1), where

m0 is the number of sites monomorphic in the sample, and, for i > 0, mi is the number

of polymorphic sites in which the derived allele is present i times in the sample of n

chromosomes. We assume all polymorphic sites are biallelic. Then,
∑n−1

i=0 mi is L,

the number of sites surveyed, and
∑n−1

i=1 mi is the total number of segregating sites

in the sample, S. Also note that m0 = L − S. In this case of free recombination

between sites, full likelihood approaches are computationally undemanding. This

case has been examined by Wooding and Rogers (2002), Polanski and Kimmel

(2003), and Marth et al. (2004) and is also the focus of our study. We examine the

statistical properties of demographic inferences based on m using maximum likelihood

and assuming sites are independent. By utilizing the entire frequency spectrum,

m, rather than a summary statistic such as Tajima’s D, this approach captures all

available information in data sets consisting of unlinked polymorphic sites.

With linkage between sites, there is a statistical non-independence between poly-

morphic sites, and thus m for a set of linked sites would contain less information than

for a set of unlinked sites. It follows that our results for unlinked sites gives an idea of

the best one can do using m or summary statistics, such as Tajima’s D, which can be

calculated from it. It is important to note that for linked sites m does not completely

characterize the data, and that full-likelihood which incorporates information about

linkage disequilibrium, for instance, might result in better inferences.
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The models examined here consist of either exponential growth or an instanta-

neous decrease followed by exponential growth, which require simultaneous estima-

tion of either two or three parameters, respectively. We illustrate that, particularly

for recent growth scenarios, data sets consisting of large numbers of segregating sites

are required to produce good estimates based solely on frequency spectrum data.

Our results provide a theoretical perspective on the feasibility of frequency spectrum-

based parameter estimation with a modest amount of data, and we present methods

to determine the approximate variance and covariance associated with such estima-

tors under any demographic scenario of interest. The maximum likelihood method

is also applied to three human data sets. The first is an African data set consisting

of the original data set of Frisse et al. (2001) as well as 40 additional locus pairs

(Di Rienzo, unpublished data). The Seattle SNPs data, consisting of both African

American and European data sets (http://pga.gs.washington.edu), is also examined.

Each of these data sets consists of linked segregating sites within effectively unlinked

loci, and a procedure is outlined by which one can extend this method to such data

and construct the appropriate confidence regions associated with the estimators.

2.2 Model and methods

2.2.1 Demographic model

The demographic model considered is that of a population of constant effective

size N0 until time T when there was an instantaneous decrease to an intermediate

population (Nint) size followed by exponential growth to the current population size

(Nrec). As illustrated in Figure 2.1, this model involves four demographic parameters:

N0, Nint, Nrec, and T , where T is the time at which the instantaneous size change
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Figure 2.1: Demographic model. fint(= Nint/N0), frec(= Nrec/N0), and T are the
estimated parameters.

occurred. T is measured in units of 4N0 generations before the present. We assume

the mutation rate per site, u, is small, so that the occurrence of more than one

mutation occurring in the history of the sample at a single site can be ignored. We

find it convenient to introduce the parameters, fint = Nint/N0 and frec = Nrec/N0

and specify the model by 4N0u, fint, frec, and T . This demographic model is flexible

and can be generalized to the case of exponential growth with no bottleneck by setting

fint equal to one, or to the case of a population reduction with no recovery by setting

frec equal to fint. We also assume that the population is unstructured (panmictic)

and that the polymorphic sites are unlinked.

2.2.2 Maximum likelihood method

The maximum likelihood approach followed here is that of Wooding and Rogers

(2002) and Polanski and Kimmel (2003). Our analyses require a population survey

of variation at a set of L unlinked sites. For L unlinked sites, m is multinomially
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distributed,

Prob(m) =




L

m0 m1 . . . mn−1




n−1∏

i=0
P

mi
i (2.1)

where P0 is the probability that a site is monomorphic in the sample, and, for i > 0,

Pi is the probability that a site is polymorphic with i copies of the derived allele.

The Pi’s are functions of the four parameters of the demographic model

(θ0, fint, frec, and T ) and the sample size n .

To obtain the maximum likelihood estimates of the parameters one maximizes the

right hand side of (1). We note, however, that we can write the probability of the

data as

Prob(m) =




L

m0 m1 . . . mn−1


 P

(L−S)
0 (1− P0)

S
n−1∏

i=1

P
mi
i

(1− P0)mi
(2.2)

=




L

m0 m1 . . . mn−1


 P

(L−S)
0 (1− P0)

S
n−1∏

i=1
p
mi
i (2.3)

where pi(= Pi/(1− P0))is the probability that a site is polymorphic with i copies of

the derived allele, conditional on the site being polymorphic in the sample. P0 and

the pi’s can be written in terms of θ0 and mean properties of sample gene trees. For

example, for θ0 small, P0 can be expressed in terms of the mutation parameter and

the mean total length of the gene genealogy:
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P0 ≈ 1− θ0τ(n), (2.4)

where τ(n) is the mean total length of the gene tree of a sample of n chromosomes

measured in units of 4N0 generations (Hudson 1990). We define an i-branch to be

a branch of the gene tree such that a mutation that occurs on the branch results in i

copies of the mutation in the sample. The mean total length of i-branches in units

of 4N0 generations, we denote by τi(n). Then, Pi is approximately θ0τi(n), and

pi ≈
θ0τi(n)

θ0τ(n)
=

τi(n)

τ(n)
, i > 0 (2.5)

When time is measured in units of 4N0 generations, τi(n) and τ(n) are functions

of f int, frec, and T, but do not depend on N0 or θ0. Thus, to find the maximum

likelihood estimates of the four parameters, we can first find the maximum likelihood

estimates, f̂int, f̂rec,and T̂ , by maximizing
∏n−1

i=1 p
mi
i . The maximum likelihood es-

timate of θ0 , if desired, can then be obtained as θ̂0 = (S/L)/τ̂(n), where τ̂(n) is the

mean gene tree length with f int, frec, and T set equal to the maximum likelihood

estimates. In this paper, we focus on estimation of the parameters f int, frec, and

T, which requires maximizing
∏n−1

i=1 p
mi
i and does not require specifying L or m0.

Equivalently, we can consider estimation of the parameters based on the probability

of m conditional on S, which is

Prob(m|S) =
Prob(m)

Prob(S)

=
Prob(m)


L

m0


 P

(L−S)
0 (1− P0)S
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=




S

m1 m2 . . . mn−1




n−1∏

i=1
p
mi
i , (2.6)

which does not depend on L or m0.

To find the maximum likelihood estimates of f int, frec, and T, we estimate

Prob(m|S ) at a set of points on a rectangular grid of values in the three-dimensional

space of f int, frec, and T values. For each point in the grid, we estimate the τi(n)’s by

generating 100,000 replicate gene trees with simple one site coalescent simulations.

The τi(n)’s can also be obtained as described elsewhere (Griffiths and Tavare

1998; Polanski and Kimmel 2003; Wooding and Rogers 2002), and this method

can be generalized to any demographic model for which the relevant τi(n)’s can be

calculated or estimated. From the estimated τi’s, the pi’s are calculated, which in

turn are used to calculate the product,
∏n−1

i=1 p
mi
i . Since we have ignored the prob-

lem of estimating θ0, we do not require L, and the results are all given conditional on

specified numbers of polymorphic sites.

2.2.3 Required data

Our analyses require data in the form of unlinked polymorphic sites. Ascertain-

ment bias is not considered in this paper, so we assume that sites are randomly chosen

with no prior knowledge of polymorphism and sequenced in each sampled chromo-

some. Frisse et al. (2001) sequenced ∼25kb and found 120 segregating sites in an

African Hausa sample of 30 chromosomes. If we consider genome-wide polymorphism

levels to be similar to that data, then approximately 104,000 sites would have to be se-

quenced in 30 chromosomes to assemble a data set consisting of 500 segregating sites.

These 104,000 sites could be sequenced in small unlinked segments throughout the

genome in order to obtain frequency spectrum data from unlinked polymorphic sites.
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We consider only biallelic polymorphic sites and assume that the ancestral/derived

status of each allele is known. However, not having knowledge of the ancestral state

makes only a minimal difference to our results (data not shown). We also assume

that all sites are surveyed in a sample of n chromosomes (or n
2 diploid individuals),

but more general sampling is easily accommodated. For example, one can separate a

data set into a series of frequency spectra, each with a different n. A global likelihood

may then be obtained for the entire data set by multiplying the result of equation

[1.6] for sets of sites with different sample sizes.

2.2.4 Sample size comparison

We compare the effect of sample size and number of unlinked polymorphic sites on

both the power to reject the null hypothesis of constant population size and the quality

of estimates of specific demographic parameters. The number of segregating sites,

when indicated, is scaled based on the average total branch length of a random gene

genealogy (τ), which will vary according to sample size and demographic scenario.

For example, suppose we wish to compare sample sizes of 50 and 100 chromosomes

under a growth scenario where 40-fold expansion occurred beginning 10,000 years ago.

In this case τ(50) (in units of 4N0 generations) for a sample size of 50 chromosomes

is 4.93, τ(100) for a sample size of 100 chromosomes is 6.06, and τ(100)/τ(50) is

1.23. In words, the average total branch length of a random gene genealogy is 1.23

times greater for a sample size of 100 than for a sample size of 50. This indicates

that for every 500 segregating sites discovered in a sample size of 50, approximately

615 segregating sites would be found in a sample size of 100 if the same number of

sites were sequenced. Thus, when we compare sample size 50 to sample size 100, we

compare n=50, S=500 to n=100, S=615. Normalizing the number of sites in this

way serves to facilitate comparisons between analyses of different sample size because
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it takes into account the expected number of polymorphic sites in the samples of each

size.

2.2.5 Asymptotic properties

To investigate whether asymptotic approximations of confidence regions and vari-

ances of estimators are applicable to data sets of modest size, we first determined

whether 95% confidence regions obtained from the log likelihood ratio have the ex-

pected coverage properties. Confidence regions include those points on the grid with

a log likelihood ratio less than 3 or 3.9 for simultaneous estimation of 2 or 3 param-

eters respectively. We also compared the observed variances and covariances of the

estimators with the approximate variances and covariances calculated by estimating

the inverse of the information matrix

Iij = −E(
∂2

∂ξi∂ξj
logL) . (2.7)

We estimate the expected log likelihood with

E(log L) =
n−1∑

i=1
Pi(frec0 , fint0 , T0)log(Pi(frec, fint, T )) (2.8)

with the Pi(frec0 , fint0 , T0) estimated by coalescent simulation for a set of points on

a narrow grid of frec, fint, and T values around the true parameter values of frec0 ,

fint0 , and T0. The second partial derivatives relevant to the information matrix are

then approximated from best-fit second-degree polynomial curves. The variance and

covariance observed from simulation can then be compared to the appropriate terms

of the inverse of Iij to determine whether the asymptotic approximations apply to

data sets of modest size.
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2.3 Results

2.3.1 Accuracy and precision of estimated τi’s

As described in Methods, we estimate the relevant τi(n)’s from 100,000 repli-

cate gene trees generated by one site coalescent simulations. We find that our τi(n)’s,

estimated from simulation, are in very close agreement to τi(n)’s calculated numeri-

cally by the method of Polanski and Kimmel (2003). For the case of frec = 2.0,

fint = 0.15, and T = 0.0375 for a sample size of 46, the maximum likelihood pa-

rameters for the Seattle SNPs European data set, we find that our simulated τi(46)’s

differ, at most, by 0.05% from the calculated τi(46)’s. Additionally, we calculate the

log likelihood of the Seattle SNPs European data set using 10 independent τi(46)

estimates, each resulting from 100,000 replicate gene trees, and find that the likeli-

hoods calculated from our simulated τi(46)’s differ little between trials, ranging from

-11987.278 to -11987.302. Since the log likelihood ratio critical values relevant for our

construction of confidence regions range from 3.86 to 9.1, such a negligible fluctuation

would not affect our inferred acceptance regions.

2.3.2 Power curves

Power analyses were conducted using a chi-squared test with n-2 degrees of free-

dom for a sample size of n chromosomes to determine the degree of growth that would

be required to reject the null hypothesis of constant population size using only fre-

quency spectrum information. For smaller numbers of segregating sites, the degrees

of freedom may vary slightly, as frequency categories with expected site counts of less

than 5 are collapsed. The expected frequency spectrum under the null hypothesis is

calculated from
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pi =
1
i∑n−1

j=1
1
j

, 1 ≤ i ≤ n− 1 (2.9)

(Ewens 1979) by multiplying each pi by the number of segregating sites. The ob-

served frequency spectrum is obtained by estimating the pi’s from 100,000 replicates

for each combination of fint, frec, and T values and then multinomially sampling

from these simulated pi’s. For each sample size, the number of segregating sites at

each frec value is scaled based on 500 polymorphic sites in a sample size of 20, as

described in Model and Methods.

Recent growth beginning 10,000 years ago

Figure 2.2a shows power curves for the scenario of recent growth beginning at

T = 0.0125 ( which, for humans, would correspond to 10,000 years ago based on a

generation time of 20 years and N0 of 10,000 , roughly corresponding to the advent

of agricultural society) . We consider sample sizes of 10, 20, 50, 100, and 250 chro-

mosomes with 500 polymorphic sizes (scaled as described above) which, for a sample

size range of 10-250, corresponds to a range of 398-859 sites at constant population

size (frec = 1) to 390-1137 sites at the most extreme growth scenario considered

(frec = 250). With sample sizes of 20 or less, the power to reject the null hypothesis

of constant population size never exceeds 0.15, even with 500-fold growth. With a

sample size of 50, power reaches ∼0.5 with 50-fold growth, but barely rises above 0.6

at the largest magnitude of growth considered. As sample size reaches 100, one can

reliably detect 20-fold growth, and a sample size of 250 allows for a power near 1

to reject the null hypothesis with only 5-fold growth (Figure 2.2a). It is clear that

recent rapid growth can be reliably detected with frequency spectrum data only with

fairly large samples (>100 chromosomes), and the most modest growth scenarios may
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Figure 2.2: Power to detect growth with ∼500 unlinked sites. The number of sites
used for each point in a curve is scaled based on 500 sites in a sample size of 20. (a)
Effect of sample size on power to detect recent growth beginning 10,000 years ago
(T = 0.0125). (b) Effect of the onset time of growth on power to detect growth with
a sample size of 20.



23

only be detected with samples consisting of at least 250 chromosomes when data sets

consist of only 500 (scaled) polymorphic sites.

More ancient growth onset

Power to reject the constant size hypothesis is also dependent upon the time that

exponential growth begins, as illustrated in Figure 2.2b. While power is minimal for

small sample sizes with growth beginning 10,000 years ago, power increases dramat-

ically with more ancient growth. For example, while a sample size of 20 with 500

polymorphic sites yields virtually no power to detect any magnitude of growth begin-

ning 10,000 years ago, if growth instead began 50,000 years ago, a sample size of 20

with the same number of sites would be sufficient to reliably detect 10-fold growth.

2.3.3 Asymptotic properties

We evaluate the distribution of our maximum likelihood estimates to determine

whether asymptotic theory provides an adequate approximation of the 95% confidence

regions and variance associated with our parameter estimates. Table 2.1 illustrates the

proportion of maximum likelihood estimates for which the true value of the parameters

lies outside the asymptotic 95% confidence region. Our simulations indicate that for

large amounts of data, asymptotic theory does provide a good approximation of the

95% confidence region for the demographic scenario examined. For smaller amounts

of data, the asymptotic approximation appears to be conservative, with the true

parameter values lying within the 95% confidence region in ∼97-98% of the runs. We

also examine a specific case corresponding to the Hausa data set, which consists of

597 sites in a sample size of 30. For a data set of this size (simulated from the Hausa

MLE), we find that asymptotic approximation is especially conservative, rejecting the

true parameter values in only 2.04% of the 5,000 simulated data sets.
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Evaluation of asymptotic confidence region
Sample Size = 50 Sample Size = 100

1,000 Sites 0.02332 0.01911
5,000 Sites 0.03774 0.06186
10,000 Sites 0.03750 0.05155
20,000 Sites 0.06122 0.05096

Table 2.1: Proportion of simulations where the log likelihood ratio lies outside the
two-dimensional asymptotic confidence region (log likelihood ratio > 3). Each value
is based on 5,000 repetitions with parameter values of frec = 5, fint = 0.5 , and
T = 1 .

We also determine the variance and covariance of our maximum likelihood esti-

mators in two dimensions by both asymptotic theory and simulation (Table 2.2). In

this analysis, we assume that Nrec is known and is 5-fold greater than N0(frec = 5),

while fint and T are jointly estimated. For this demographic scenario, asymptotic

theory provides a good approximation for the simulated variance and covariance only

when the data set consists of a large number of segregating sites.

2.3.4 Quality of estimators

We evaluate the quality of our maximum likelihood estimators by examining the

distribution of the estimates under both two-dimensional and three-dimensional mod-

els.

Two-dimensional estimators

A recent growth scenario was examined in which the population size was constant

until exponential growth occurred beginning 10,000 years ago. Data sets were simu-

lated with frec ranging from 10- to 320-fold growth, fint fixed at 1, and the T equal

to 0.0125 (10,000 years ago based on a generation time of 20 years and N0 of 10,000).
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Asymptotic and simulated variance of two-dimensional estimators
Variance

f̂int T̂ Covariance Correlation
Asymptotic
1000 Sites 0.03111 0.08806 -0.01804 -0.34
5000 Sites 0.006223 0.017612 -0.003608 -0.34
10000 Sites 0.003112 0.008806 -0.001804 -0.34
20000 Sites 0.001556 0.004403 -0.000902 -0.34
Simulated
1000 Sites 0.016781 0.056648 -0.00745 -0.24
5000 Sites 0.005966 0.014237 -0.002720 -0.3
10000 Sites 0.002367 0.007119 -0.001810 -0.44
20000 Sites 0.001580 0.004182 -0.001040 -0.4

Table 2.2: Asymptotic variance obtained from the estimated information as described
in the text (equations [2.7] and [2.8]). Results based on a demographic scenario of
frec= 5.0, fint= 0.5, and T = 1.0 and a sample size of 50 chromosomes. We assume
frec is known and sites are unlinked.

For this scenario of recent growth, a sample size of at least 250 chromosomes with

∼16,000 segregating sites is required for 90% of the distribution of f̂rec to lie within

a factor of four of the true frec value for all magnitudes of growth examined. This

is illustrated in Figure 2.3, which compares the f̂rec distribution under this recent

growth scenario for a sample size of 50 and 250 for 20-fold growth. As the magnitude

of growth increases, f̂rec becomes biased more severely upward. This result is similar

to that obtained for growth beginning at T equal to 0.0625 (Table 2.3).

The estimates of T, however, are not subject to the upward bias seen in f̂rec.

Instead, estimates of T are improved as the magnitude of growth increases (Table

2.4). Sample size also has a dramatic effect on the distribution of T̂ , as illustrated

in Figure 2.4, which compares the T̂ distribution for a sample size of 50 and 250

respectively. With 5,000 sites in a sample size of 50 chromosomes, 95% of T̂ estimates

lie within a factor of three of the true T value for ten-fold growth, with 95% of the
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Figure 2.3: Distribution of f̂rec. Histograms are based on 5,000 simulated data sets
where frec = 20 and fint is fixed at 1. (a) 50 chromosomes; 10,000 sites (b) 250
chromosomes; 16,244 sites (T = 0.0125) and 20,322 sites (T = 0.0625).
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distribution lying within a factor of 1.5 for 320-fold growth, the most severe growth

scenario examined.
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Figure 2.4: Distribution of T̂ . Histograms are based on 5,000 simulated data sets
with parameters frec= 20, fint= 1 (fixed), T = 0.0125 , each consisting of 10,000
polymorphic sites in 50 chromosomes or 16,244 polymorphic sites in 250 chromosomes.

We explored another growth scenario in which the onset of growth was more an-

cient, beginning 50,000 years ago. In this case, the quality of the estimators improved,

and 90% of the f̂rec distribution was within a factor of four of the true frec value for

a sample size of 50 with 5,000 sites (as opposed to a sample size of 250 and ∼16,000

sites under the more recent growth scenario). Figure 2.3 reveals the improvement

in the f̂rec estimator with the more ancient time of growth onset. As in the recent

growth scenario, increasing the degree of growth both increased the bias and widened

the quantiles of the f̂rec distribution (Table 2.3). The T estimates under the more

ancient growth scenario were also improved over the analogous recent growth esti-

mates, with 95% of the T̂ distribution within a factor of two of the true T value for

all magnitudes of growth examined with data sets as small as a sample size of 50 with

1,000 sites.



28

Distribution of f̂rec
frec

frec Mean Std. Dev. 0.05 0.5 0.95
10 1.0674 0.2926 0.7 1.0 1.6
20 1.0925 0.3862 0.7 1.0 1.7
40 1.1629 0.5722 0.6 1.0 2.2
80 1.2980 0.8200 0.5 1.0 3.3
160 1.3906 1.0092 0.4 1.0 3.9
320 1.5072 1.1824 0.3 1.0 3.9

Table 2.3: Time of expansion is ∼50,000 years (T = 0.0625), and fint is fixed at 1.
Simulated data sets consist of 5,000 unlinked sites in a sample size of 50. The f̂rec

grid includes 40 grid points from f̂rec = 0.1(frec) to f̂rec = 4(frec).

Distribution of T̂
frec Mean Std. Dev. 0.025 0.5 0.975
10 0.015254 0.007262 0.0077 0.0125 0.0365
20 0.014790 0.005698 0.0089 0.0125 0.0269
40 0.014647 0.004850 0.0089 0.0125 0.0281
80 0.014118 0.003349 0.0101 0.0125 0.0221
160 0.013706 0.002479 0.0101 0.0137 0.0197
320 0.013331 0.001947 0.0101 0.0125 0.0173

Table 2.4: Time of expansion is ∼10,000 years (T = 0.0125), and fint is fixed at 1.
Simulated data sets consist of 5,000 unlinked sites in a sample size of 50. The T̂ grid
includes 40 grid points from T̂ = 0.1(T ) to T̂ = 4(T ).



29

Three-dimensional estimators

We consider a three-dimensional model of a constant sized population that expe-

rienced an instantaneous decrease to 0.05 times its initial size 100,000 years in the

past, followed by exponential growth until the present to a final size of five times the

initial population size (frec = 5; fint = 0.05; T = 0.125). All three parameters were

estimated for 5,000 simulated data sets. Under this model, 90% of the distribution of

each of the three estimators falls within a factor of four of the respective true values

with data sets as small as 500 sites in a sample size of 30 (Table 2.5). If a large data set

consisting of 10,000 polymorphic sites in 50 chromosomes were available, 95% of the

estimates of all three parameters would lie within a factor of 1.5 of the true parameter

values. As would be expected, estimates of any of the three parameters are improved

by fixing one of the parameters at its true value (data not shown), indicating that

incorporation of prior knowledge of one of the parameters would be beneficial.

2.3.5 Applications

We apply the maximum likelihood method to data obtained from an African Hausa

population (Di Rienzo, unpublished data) as well as to the African American and Eu-

Distribution of three-dimensional MLEs
Mean Std. Dev. 0.05 0.5 0.95

f̂rec 6.017479 4.233278 1.5 5 15

f̂int 0.056695 0.042797 0.01 0.045 0.14

T̂ 0.112958 0.038210 0.055 0.115 0.175

Table 2.5: Simulated data sets consist of 500 sites in a sample size of 30 chromosomes,
where frec = 5.0, fint = 0.05, and T = 0.125. The three-dimensional grid includes
f̂rec values from 0.5 to 14.5 (at 0.5 intervals), f̂int values from 0.01 to 0.15 (at 0.005
intervals) and T̂ values from 0.025 to 0.225 (at 0.01 intervals).
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Analysis of Hausa and Seattle SNPs data sets

f̂rec f̂int T̂ Likelihood† p-value‡

Hausa Data Set

MLE 3.1 1 6.1 -1411.14 0.304
Constant Population Size 1 1 - -1413.34 0.204
SSNPs Afr. Am. MLE 1.9 1 0.27 -1411.69 0.113

SSNPs Afr. Am. Data Set

MLE 1.9 1 0.27 -15448.17 2 x 10−4

Constant Population Size 1 1 - -15544.63 << 1 x 10−4

SSNPs Eur. Data Set

MLE 2.0 0.15 0.0375 -11987.28 0.2015

Constant Population Size 1 1 - -12022.41 < 1 x 10−4

Table 2.6: Results obtained as described in text.

† Note that this is not true likelihood since the SNPs are not entirely unlinked
‡p-values calculated from χ2 goodness-of-fit test where the distribution of the χ2 test
statistic is simulated for each data set, accounting for linkage as described in the text.

ropean (CEPH) samples of the Seattle SNPs data set (http://pga.gs.washington.edu).

Hausa data

The Hausa data set consisted of the data of Frisse et al. (2001) in conjunction

with additional unlinked locus pairs (Di Rienzo, unpublished data), which resulted

in a data set consisting of 30 chromosomes and 597 polymorphic sites in an African

sample, the Hausa of Cameroon. The sites in this data set include linked polymorphic

sites within 50 effectively unlinked loci, but in the maximum likelihood analysis we

treat each site as though it provides independent information. As seen in Table 2.6,

f̂rec = 3.1, f̂int = 1, and T̂ = 6.1 for this data set.

We perform a χ2 goodness-of-fit test on the Hausa data set to determine whether

the maximum likelihood parameters can be accepted as an explanation of the Hausa

data. However, this test assumes that each site is independent, which is not the case
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for this data set. Because the linkage between sites will affect the 95% critical value of

the χ2 test statistic, we determine the critical value of the test statistic distribution for

this data set by coalescent simulation with recombination (Hudson 1983, 2002). We

simulate 5,000 data sets, each consisting of 30 chromosomes and 50 unlinked loci. The

input parameters for the simulation included Watterson’s estimate of θ (estimated to

be 0.0012 per bp), the recombination rate (estimated to be 5.99 x 10−4 per bp), the

average locus length (10,286 bp), and a gene-conversion to crossing-over ratio of 2.

Polymorphic sites within the middle 8,000 bp were ignored to mimic the locus pair

data (Frisse et al. 2001). Because the ancestral/derived status of each allele was

not considered, each simulated frequency spectrum was folded at frequency 0.5 prior

to performing the χ2 goodness-of-fit test. Based on these simulations, we find the

95% critical value of the χ2 test statistic to be 39.39, as opposed to a critical value of

23.68 (14 degrees of freedom) if all sites were independent. The χ2 goodness-of-fit test

statistic for the Hausa data set under its maximum likelihood estimate of f̂rec = 3.1,

f̂int = 1, and T̂ = 6.1 is 26.30 (p = 0.304), indicating that this scenario can not be

rejected at the 0.05 significance level. Note, however, that this demographic scenario

would have been rejected without properly accounting for the linkage within the data

set. We also consider the equilibrium model of constant population size for this data

set and obtain a χ2 goodness-of-fit test statistic of 29.24 (p = 0.204). Based on

an analysis of 10 locus pairs (a subset of the 50 locus pairs examined here), Frisse

et al. (2001) also concluded that the Hausa data set is consistent with the equilibrium

model.

Seattle SNPs

We also examine both the African American and the European samples of the

Seattle SNPs data set (http://pga.gs.washington.edu). These data sets consist of
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12,587 and 7,712 total SNPs across 138 loci in the African American and European

samples, respectively. We considered only those SNPs that were sequenced in the

entire panel of 48 (African American) or 46 (European) chromosomes to facilitate

evaluation of confidence regions and goodness-of-fit by simulation. Additional anal-

yses incorporating more of the SNPs are described in the Discussion. The frequency

spectrum of non-synonymous SNPs has been shown to differ from that of synonymous

SNPs (Cargill et al. 1999; Fay et al. 2001; Wooding and Rogers 2002), so we

also removed all SNPs that result in an amino-acid coding change to minimize the

inclusion of those SNPs subject to non-neutral evolutionary processes. This resulted

in a final data set of 5,892 SNPs for the African American data set and 4,211 SNPs

for the European data set. We applied our maximum likelihood method to these data

sets, treating all SNPs as unlinked, and found that the three-dimensional maximum

likelihood estimates of frec, fint, and T are f̂rec = 1.9, f̂int = 1, and T̂ = 0.27 for

the African American data set and f̂rec = 2, f̂int = 0.15, and T̂ = 0.0375 for the Eu-

ropean data set (Table 1.6). These estimates suggest a scenario of very slow growth

over a long period of time with no bottleneck for the African Americans and a fairly

recent population bottleneck with ∼13-fold recovery for the Europeans.

To determine whether the demographic model we consider is compatible with the

Seattle SNPs data, we simulate the distribution of the goodness-of-fit test statistic

for this data set as described for the Hausa data set. For these simulations, each data

set consisted of 48 chromosomes and 138 loci. The input parameters were that of the

Hausa data set, except substituting the average length of a Seattle SNPs locus. In

this case, each locus was simulated fixing the number of segregating sites to be the

average number of segregating sites per locus in the African American or European

Seattle SNPs data set, so each simulated data set contained the same total number of

segregating sites as our observed Seattle SNPs African American or European data
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set. Because the Seattle SNPs data sets do not specify the ancestral/derived status

of each allele, each simulated frequency spectrum is again folded. The 95% critical

values of the distribution were found to be 48.68 (African) and 137.36 (European) as

opposed to 35.17 (23 degrees of freedom) and 33.92 (22 degrees of freedom) if all sites

were unlinked.

Using these simulated critical values, a χ2 goodness-of-fit test indicates that the

maximum likelihood parameters produce an expected frequency spectrum that is not

significantly different from the observed Seattle SNPs European data (χ2= 122.98;

p = 0.2015). Therefore, we can accept our simple bottleneck model as a reasonable

explanation for this data set. The same test indicates that a constant population size

model is not compatible with the European data (χ2= 207.286; p < 1 x 10−4 ).

However, the χ2 goodness-of-fit test on the African American data set reveals that

the frequency spectrum predicted by the maximum likelihood estimates of frec, fint,

and T is significantly different from the empirical Seattle SNPs African American

frequency spectrum (χ2= 86.64; p = 2x10−4); therefore, our simple demographic

model can not be accepted as a complete explanation of the African American data set,

although the fit is better than that predicted by the constant population size model

(χ2= 268.66; p << 1x10−4). Figure 2.5 provides a visual comparison of the observed

Seattle SNPs frequency spectrum to the frequency spectra predicted by both the

maximum likelihood parameters and constant population size parameters, indicating

that the lack of fit of the maximum likelihood parameters does not seem to be confined

to any particular non-singleton frequency class. However, our demographic model

with the maximum likelihood parameters appears to provide a better fit to the data

than the equilibrium model, particularly in the singleton class. In addition, we note

that a χ2 goodness-of-fit test shows that the Hausa data are compatible with frec =

1.9, fint = 1, and T = 0.27 , the estimates obtained from the Seattle SNPs African
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Figure 2.5: African American Seattle SNPs folded frequency spectra comparison.
Empirical Seattle SNPs frequency spectrum and the expected frequency spectrum
for demographic parameters corresponding to the Seattle SNPs maximum likelihood
estimate (frec=1.9, fint=1, and T = 0.27) and constant population size. The number
of SNPs at a sample frequency of i is equal to the total number of SNPs (5,892) times
pi (folded). For constant population size, pi’s are obtained from Equation [2.9], and,
for the maximum likelihood parameters, pi’s are obtained from simulation as described
in the text.
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American data set (χ2 = 33.46 ; p = 0.113).

Because the sites in the Hausa and Seattle SNPs data sets are not entirely unlinked,

asymptotic approximation of confidence intervals is not appropriate. We simulate

10,000 data sets as described above for both the Hausa and Seattle SNPs data sets,

using their respective maximum likelihood estimates for input parameters, and apply

the maximum likelihood method to the folded frequency spectrum of each simulated

data set. For the Hausa and Seattle SNPs African American data sets, we estimate

both frec and T, fixing fint at 1, which was the maximum likelihood estimate for both

data sets. All three parameters were estimated for the data sets simulated from the

Seattle SNPs European parameters. The ratio of the log likelihood at the maximum

likelihood parameters to the log likelihood at the parameters from which the data set

was simulated could then be calculated. From the log likelihood ratio distribution,

we determine the 95% critical value to be 3.86 for the Hausa data set and 4.85 for

the Seattle SNPs African American data set as compared to the asymptotic critical

value of 3.0 for two-dimensional maximum likelihood estimates. The 95% critical

value of 9.1 was found for the European data set as compared to the asymptotic

critical value of 3.9 for three-dimension estimation. Using the critical values from

simulation, we can easily reject the constant size population model for the Seattle

SNPs African American and European data sets since the log likelihood ratios are 96

and 35, respectively (Table 1.6).
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Figure 2.6: Hausa confidence region. The third dimension, fint is fixed at 1. (a)
Maximum likelihood estimate (MLE) is indicated by the arrow (f̂rec=3.1, T̂ = 6.1).
(b) Focus on recent growth times with expanded frec range. The leftmost, middle,
and rightmost contours represent the 95%, 99%, and 99.9% confidence intervals (3.86,
6.38, and 10.08 log likelihood units, respectively).

Figure 2.6 provides a visual representation of the 95%, 99%, and 99.9% confidence

regions of the Hausa data set obtained by including all parameter values for which

the log likelihood ratio is ≤ 3.86, 6.38, and 10.08, respectively. Likewise, Figure 2.7

illustrates the analogous confidence regions for the Seattle SNPs African American

(2.7a) and European (2.7b) data sets.

2.4 Discussion

Our power analyses on models with exponential growth beginning 10,000 years

ago illustrate that the frequency spectrum does not provide sufficient information

to reject the null hypothesis of constant population size when either small sample

sizes (< 50 chromosomes) or small numbers of unlinked sites (< 1,000) are available.

This result should serve as a cautionary note to researchers interested in demographic

models involving expansion as recent as 10,000 years. Prior knowledge of the model of
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Figure 2.7: Seattle SNPs Confidence Regions. (a) African American data set, with
MLE indicated by the arrow (f̂rec = 1.9, T̂ = 0.27). The third dimension, fint is
fixed at the MLE of f̂int = 1. (b) European data set, with MLE indicated by the
arrow (f̂int = 0.15, T̂ = 0.0375). The third dimension (frec) is fixed at the MLE of
f̂rec = 2.0 . The innermost, middle, and outermost contours surrounding the MLE
represent the 95%, 99%, and 99.9% confidence regions, respectively.

interest should also be considered when determining whether the frequency spectrum

retains the requisite information for demographic inference, as the power to detect

departures from constant size increases with both the extent of growth (Figure 2.2a,b)

and the time since the onset of growth (Figure 2.2b).

Application of the maximum likelihood method on recent growth scenarios reveals

that data sets consisting of at least 250 chromosomes with at least 10,000 scaled seg-

regating sites (15,838-17,140 segregating sites depending upon the true frec value)

are required for the f̂rec distribution of to have 95% critical values that fall within a

factor of four of the true frec value if growth began as recently as 10,000 years ago

(T = 0.0125). Unless large sample sizes and many unlinked sites are surveyed, the

frequency spectrum alone provides little information about the magnitude of growth

that has occurred relatively recently. As frec increases, the frequency spectrum be-

comes more distinct from that which would be expected under a constant size scenario.

However, with increasingly extreme recent growth, the frequency spectrum becomes
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less distinguishable from that of other severe growth scenarios, and it becomes more

difficult to estimate the frec parameter with frequency spectrum information alone.

While it is difficult to accurately estimate frec for scenarios of recent growth, T

can be estimated with more modest amounts of data. The distribution of T̂ has 95%

critical values that fall within a factor of four of the true T value for sample sizes as

small as 50 chromosomes and 5,000 sites, as compared to a sample size of 250 and

15,838-17,140 sites required to estimate frec to the same accuracy. Additionally, T̂

is not subject to the upward bias seen in f̂rec, and estimates of T actually improve

with increasing frec. Estimates of both frec and T improve as the onset of growth

becomes more ancient. This observation is consistent with our observation that power

to reject the null hypothesis of constant population size with frequency spectrum data

increases with scenarios of more ancient growth (Figure 2.2b).

Simultaneous estimation of all three parameters results in estimator distributions

where 90% of the estimates lie within a factor of four of the true parameter values

with data sets as small as 500 segregating sites in a sample size of 30 for a model

where the population decrease and subsequent expansion began 100,000 years ago and

the present population is only five times the initial population size. These estimates

benefit from both a more ancient time of growth onset and a modest magnitude of

growth that is not subject to the upward bias seen in more severe growth scenarios.

The ability of the frequency spectrum alone to elucidate the time and magnitude of

population size change events is, therefore, greatly dependent upon the underlying

demographic model. While ancient demographic events may be inferred relatively

accurately from contemporary frequency spectrum patterns, more recent and severe

episodes of growth are problematic for this method and require exceedingly large

amounts of unlinked data. For these recent growth scenarios, it is possible that

more informative estimates could be obtained by using a method that uses linked
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polymorphic sites and considers additional aspects of the data such as levels of linkage

disequilibrium.

Evaluation of the asymptotic properties of our maximum likelihood estimators in-

dicates that asymptotic theory provides a reasonable approximation of the confidence

intervals associated with the estimators. As we illustrate with the Hausa and Seat-

tle SNPs data sets, it is also possible to construct these confidence intervals around

a maximum likelihood estimate through simulation. By simulating data sets that

closely match the properties of the observed data set, one can estimate the critical

value of this log likelihood ratio distribution and construct corresponding confidence

regions. This procedure is particularly relevant when asymptotic approximation is

not appropriate, such as when the segregating sites in a data set are not unlinked.

We apply the maximum likelihood method to both the African Hausa data set

and the African American and European samples of the Seattle SNPs data set. In

both the Hausa and the Seattle SNPs data sets, the segregating sites are not entirely

unlinked, but the maximum likelihood analysis treats them as though each site pro-

vides independent information. However, we illustrate how one may use simulation

to construct confidence regions and use goodness-of-fit tests that take into account

the linkage between sites.

In the Seattle SNPs African American data set, the simulated 95% confidence

interval clearly allows for rejection of the constant population size model, since the

log likelihood of observing the data is almost 100 units less with the constant size

parameters than with the estimated parameters. The maximum likelihood estimates

of f̂rec = 1.9, f̂ int = 1, and T̂ = 0.27 based on the Seattle SNPs African American

data correspond to a slow, ancient growth scenario where growth began over 200,000

years ago to a present size of ∼2 times the initial population size.

The simulated 95% confidence region around the Seattle SNPs African American
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maximum likelihood estimates, shown in Figure 2.7a, includes only a very narrow

range of frec values within 1.6 to 2.5. However, the confidence region includes a wide

range of T values ranging from as recent as 80,000 years (T = 0.1) to the most ancient

time examined, 800,000 years (T = 1), assuming a generation time of 20 years and

an N0 of 10,000. Even with the most recent compatible T value, it is not surprising

that this data set allows for rejection of the constant size hypothesis with only an

estimate of 2-fold growth. Our power analyses show that a data set consisting of 50

chromosomes has a power of 0.9 to reject the constant size hypothesis with only 1,000

unlinked sites for 2-fold growth beginning 100,000 years ago. While the Seattle SNPs

data set does not consist of entirely unlinked sites, our analysis included more than

5,000 polymorphic sites across 138 loci, which should allow for comparable power.

Despite the compact confidence region (Figure 2.7a), visually reasonable fit of the

frequency spectrum under the maximum likelihood parameters to the observed data

(Figure 2.5), and compatibility with the Hausa data set, a χ2 goodness-of-fit test

indicates that our simple three-dimensional demographic model with the maximum

likelihood estimates obtained from the Seattle SNPs African American data set is

incompatible with the Seattle SNPs data (p = 2× 10−4), even when linkage is taken

into account. The visual comparison between the observed and maximum likelihood

frequency spectra in Figure 1.5 seems to indicate that the number of singletons ex-

pected under the maximum likelihood parameters is very close to the observed value,

and therefore the incompatibility must be due to some combination of the other fre-

quency categories. The loci in the Seattle SNPs data set were chosen because of

their role in inflammatory pathways, and may reflect the action of evolutionary forces

other than population size changes. Although we removed those SNPs that result in

amino acid coding changes, which are more apt to be subject to natural selection, it

is still probable that this data set includes SNPs that are mildly deleterious and may
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influence the frequency spectrum toward greater numbers of low-frequency variants

and mimic evidence of growth.

The African American population sampled for the Seattle SNPs data set may

also be subject to population structure and admixture, which could affect the fre-

quency spectrum and confound our inference about demographic history (Ptak and

Przeworski 2002). To determine the effect of European admixture on maximum

likelihood estimates obtained from an African data set, we randomly combine 6 Ital-

ian chromosomes (Di Rienzo, unpublished data) with the 30 Hausa chromosomes at

each of the 50 locus pairs of the Hausa data set, which resulted in a total data set of

657 polymorphic sites in 36 chromosomes. This represents approximately 17 percent

European admixture, which is consistent with admixture estimates obtained from

African American populations (Parra et al. 1998). Admixture of this proportion

had virtually no effect on the maximum likelihood estimates or confidence intervals

based on the original Hausa data set (data not shown). Regardless, that does not

eliminate the possibility that either the true population structure could involve ad-

mixture in different proportions or that admixture in a larger data set such as the

Seattle SNPs would produce a more prominent effect. The frequency spectrum of the

Seattle SNPs data set is certainly not consistent with an equilibrium model of constant

population size, although the degree of growth predicted is less than some previous

reports based on African populations (Pritchard et al. 1999; Aris-Brosou and

Excoffier 1996). However, our estimate of two-fold growth beginning as recently

as 80,000 years ago is consistent with a recent study based on the frequency spectrum

in an African American population (Marth et al. 2004).

The maximum likelihood parameters estimated from this data set are consistent

with the Hausa data set, which contains noncoding loci that are less likely to be

subject to confounding factors such as selection. However, this analysis does not



42

preclude population structure within Africa as a potential influence on the maximum

likelihood estimates of the Hausa data set. The maximum likelihood estimates from

the Hausa data set (f̂rec = 3.1, f̂int = 1, and T̂ = 6.1) correspond to a scenario of

slow, ancient three-fold growth, beginning several million years ago. However, the

confidence region associated with this data set (Figure 1.6a) is consistent with a wide

range of growth scenarios, including both the demographic history estimated from the

Seattle SNPs data set (f̂rec = 1.9, f̂int = 1, and T̂ = 0.27) and also frec = 1, which

corresponds to constant population size. Additionally, Figure 2.6b provides a close-up

view of the acceptance region of Figure 2.6a, considering only more recent values of T

where the onset of growth occurs no more than 80,000 years ago. If we focus on these T

values, it is clear that our confidence regions on this data set do not exclude scenarios

of 20-fold or more growth, provided that the time of onset is correspondingly more

recent. For example, if we believe that the Hausa population has undergone growth

greater than 5-fold, then our analysis indicates that the growth must have begun no

earlier than T = 0.045 (36,000 years ago if N0 is 10,000 assuming a generation time

of 20 years). Growth of that magnitude or larger is rejected at the 1% level (Figure

2.6b) for values of T greater than 0.045 and less than 3 (approximately 36,000 to 2.4

million years ago).

Our analysis of the Seattle SNPs European data set reveals an estimated demo-

graphic history of f̂rec = 2.0, f̂int = 0.15, and T̂ = 0.0375 , which corresponds to

an 85% reduction in population size at T = 0.0375 (30,000 years ago assuming N0

= 10,000 and a 20 year generation time) and then approximately 13-fold exponential

growth to a current population size of twice the ancestral size. In constructing our

data set, we exclude all SNPs that are not successfully typed in every chromosome to

facilitate construction of appropriate confidence regions and estimation of χ2 critical

values through simulation. However, we note that if all SNPs that were typed in at
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least half of the sampled chromosomes (7,410 SNPs) were included in this analysis,

we get only a slightly different estimate (f̂rec = 1.25, f̂int = 0.2, and T̂ = 0.05) that

differs by less than 2 log likelihood units from our maximum likelihood estimate based

on the filtered data (-20668.96 versus -20670.93 when all SNPs are included). Since

the 95% confidence region includes all parameter values within 9.1 log likelihood units

from the maximum, it is not likely that this filtering of the data would result in a

significant shift in our acceptance region.

A χ2 goodness-of-fit test indicates that frequency spectrum produced by the es-

timated parameters (f̂rec = 2.0, f̂int = 0.15, and T̂ = 0.0375) is a reasonable match

to the observed Seattle SNPs European frequency spectrum with a p-value of 0.2015.

The constant size model is both rejected by the goodness-of-fit test and excluded by

the simulated likelihood ratio confidence region for this data set (Table 2.6, Figure

2.7b). These results implicate a bottlenecked history for this European data set, which

is consistent with previous studies (Marth et al. 2003, 2004) and the ’Out of Africa’

model for human population history (Harpending et al. 1998). Since the Seattle

SNPs European data set is composed of the same coding loci as the Seattle SNPs

African American data set, it seems reasonable that the lack of agreement between

the frequency spectrum predicted by the maximum likelihood parameters and the ob-

served African American frequency spectrum is more likely to be due to population

structure than the presence of slightly deleterious variants in the data set. Of course,

the good fit of the European maximum likelihood parameters does not preclude the

possibility of population structure or selection within the European data set as well.

As we have indicated earlier, there are a number of confounding factors to con-

sider when attempting to infer demographic history based on frequency spectrum

information, including population structure (past or present) and selection. An addi-

tional complication that is not considered by these analyses is ascertainment bias and
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genotyping error. It has been shown that ascertainment bias can lead to large errors

in maximum likelihood-based demographic inference (Kuhner et al. 1998; Wake-

ley et al. 2001). Polanski and Kimmel (2003) have also shown that exclusion or

misclassification of low-frequency SNPs can result in estimated growth rates that are

significantly lower than the true value. Note, however, that the sites represented in

the Di Rienzo and Seattle SNPs data sets were chosen without prior indication of

polymorphism status. Therefore, the analyses on these data sets would not be influ-

enced by ascertainment bias due to using a discovery sample for SNP identification.

However, we cannot exclude the possibility that genotyping errors have biased our

inferences.

2.5 Conclusions

Analysis of this maximum likelihood method indicates that demographic infer-

ences can be drawn from frequency spectrum data when sufficient amounts of data

are available. Asymptotic theory or simulation can be used to determine the variance

and covariance associated with these estimators to determine whether the maximum

likelihood estimates would be meaningful for a particular demographic model and

amount of data that may be available. However, our results show that very large

amounts of data may be required to obtain practical confidence regions, particularly

in models involving recent growth. For growth beginning as recent as 10,000 years

ago, the power to reject the hypothesis of constant population size is very low with

sample sizes of less than 20 chromosomes. In order to make accurate inferences un-

der this type of recent growth model using the frequency spectrum alone, both large

samples ( > 100 chromosomes) and a large number of unlinked sites ( > 5,000 sites)

are required, although estimators improve as the time of onset of growth becomes
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more ancient. In scenarios of extreme growth, there is also a severe bias in f̂rec ,

even with large amounts of data. However, T can be estimated with more modest

amounts of data, and T̂ is not subject to the bias seen in f̂rec, indicating that one

may obtain reasonable estimates of the time of population size change events, even if

the magnitude is biased. This maximum likelihood method incorporates all available

information contained in unlinked polymorphic sites, and parameter estimation meth-

ods based on summaries of the frequency spectrum require even larger amounts of

data to be equally as informative. Therefore, for scenarios where the entire frequency

spectrum of modest data sets does not provide an adequate amount of information, it

may be necessary to incorporate additional aspects of linked data in order to improve

estimates of demographic parameters.

Application of the maximum likelihood method to three human data sets im-

plicates differing demographic histories for African versus European data sets. The

African Hausa data set is compatible with a wide range of growth scenarios, ranging

from slow, ancient growth, to some scenarios of very recent, rapid growth. However,

we can reject episodes of greater than five-fold growth beginning more than 36,000

and less than 2.4 million years ago on the basis of this data set. The Seattle SNPs

African American data set also supports a model of growth, although a goodness-

of-fit test indicates that the best-fit model of ancient, slow growth is not sufficient

to explain observed frequency spectrum. Maximum likelihood analysis of the Seattle

SNPs European data set reveals that the best-fit model is one of a population bottle-

neck occurring approximately 30,000 years ago, reducing the population to 15 percent

of the ancestral size, followed by 13-fold growth to a current population size that is

twice the ancestral size.



CHAPTER 3

INFERENCE USING MULTIPLE SUMMARY STATISTICS

3.1 Introduction

Elucidating how and when populations change in size is an important element in

reconstructing evolutionary history, as these changes often reflect crucial events in

the history of a species, such as range expansions, environmental changes, admixture

between groups (Lahr and Foley 1998). Also, making inferences based on pop-

ulation variation data typically requires the specification of a demographic model.

Such applications include detecting the signature of natural selection or estimating

recombination rates from patterns of linkage disequilibrium (LD) (Akey et al. 2004;

Williamson et al. 2005; Smith and Fearnhead 2005; Stajich and Hahn 2005).

Finally, better knowledge of demographic histories in human populations is partic-

ularly important for whole genome LD-based association studies (Goldstein and

Chikhi 2002; Reich et al. 2002).

Motivated by the excess of rare variants observed in mitochondrial DNA data, at-

tention initially focused on models of ancient population growth and on the idea that

46
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population expansions may have accompanied either the dispersal out of Africa or the

emergence of new tool technology in the Upper Palaeolithic (Slatkin and Hudson

1991; Di Rienzo and Wilson 1991; Rogers and Harpending 1992; Sherry et al.

1994; Rogers and Jorde 1995; Weiss and von Haeseler 1998). However, the

accumulation of nuclear sequence variation surveys showed that this simple growth

model was consistent with the observed frequency spectrum only for a subset of the

loci (Hey 1997; Wall and Przeworski 2000; Przeworski et al. 2000). Likewise,

LD surveys revealed marked differences in the rate of LD decay in African compared

to non-African populations (Tishkoff et al. 1996; Reich et al. 2001; Frisse et al.

2001). These results together with the higher levels of sequence variation in African

compared to non-African populations led to the proposal that population size reduc-

tion, such as bottlenecks, account for patterns of variation and LD in non-African

populations (Wall and Przeworski 2000; Reich et al. 2001; Frisse et al. 2001).

This bottleneck was hypothesized to correspond with the dispersal of modern humans

out of Africa (Reich et al. 2001).

However, the investigation of formal bottleneck models has typically employed a

single aspect of genetic variation data, either the allele frequency spectrum (Wall

and Przeworski 2000; Marth et al. 2004), or patterns of LD (Reich et al. 2001;

Marth et al. 2003). This raised the question of whether such models were indeed

consistent with the data when multiple aspects of genetic variation were considered

simultaneously (Ardlie et al. 2002a,b; Eswaran et al. 2005). Specifically, it is

not known whether simple bottleneck models can generate the marked differences in

LD levels seen between Africans and non-Africans with only a limited reduction in

polymorphism levels outside Africa. While previous work suggested that variation in

recombination rate may explain the decay in LD observed in a multiethnic sample

(Reich et al. 2002), it is not obvious that it could also explain the differences between
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Africans and non-Africans.

Ideally, making inferences about population history should be based on data from

a large number of unlinked and neutrally evolving loci and on statistical methodol-

ogy that makes efficient use of all or most of the information in the data. Full re-

sequencing studies, in which the sequence of the surveyed segments is determined for

every individual in the sample, represent one scheme for generating data sets in which

multiple aspects of sequence variation are characterized. With regard to data anal-

ysis, full likelihood methods have been successfully applied to non-recombining data

(Y-chromosome or mitochondrial DNA) to reconstruct population histories (Kuhner

et al. 1998; Nielsen 1999; Beerli and Felsenstein 2001). However, for regions

with recombination, the currently available methods are computationally infeasible.

As a result, a variety of statistics, each summarizing different aspects of genetic varia-

tion data, may be used (Weiss and von Haeseler 1998; Wall and Przeworski

2000; Pluzhinikov et al. 2002), with the subsequent reduction in information con-

tent traded for computational tractability. It is still desirable to combine the results of

tests based on individual statistics, as the joint distributions of multiple summaries of

the data should contain more information than the marginal distributions of multiple

single summaries considered separately.

We previously developed a full re-sequencing scheme in which pairs of tightly, but

not completely, linked segments, referred to as “locus pairs”, are surveyed (Frisse

et al. 2001). This study design aims to maximize the information content for a given

amount of sequencing effort because, by skipping the intervening segment, many

more independent loci can be surveyed. Using this scheme, we previously surveyed 10

noncoding regions in three human population samples, Hausa of Cameroon, Italians

and Chinese. Here, we survey an additional 40 locus pairs in the same samples.

This data set allows the simultaneous characterization of polymorphism levels, allele
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frequency spectrum and LD in each sample; in addition, it obviates the need to

correct for ascertainment bias, with its associated uncertainties and possible loss of

information (Nielsen 2004; Kreitman and Di Rienzo 2004; Soldevila et al.

2005). In choosing only noncoding regions distant from genes, we limit the possibility

that our analysis of demographic history will be confounded by the effects of natural

selection.

To analyze these data, we implement an approach to determine p-values associ-

ated with several observed summaries of genetic data considered jointly over a grid

of demographic parameter values. These summaries include the average Tajima’s D

(D̄) and the variance of Tajima’s D across loci (V̂ ar[D]) (Tajima 1989b), the aver-

age number of segregating sites across loci (S̄), and an overall composite likelihood

estimator of the population cross-over rate parameter (ρ̂) (Hudson 2001). By com-

bining p-values obtained from these individual statistics into a single statistical test,

we greatly improve the power to reject demographic scenarios incompatible with the

data. While it is well established that other demographic features apply to these

populations (e.g. population subdivision and gene flow) (Rosenberg et al. 2002;

Wakely and Lessard 2003), we chose to focus solely on population size changes

to reduce modeling complexity. We explore an extensive grid of the demographic pa-

rameter space which revealed a confidence set of relatively simple bottleneck models

which explain the patterns of variation in the non-African samples. Our results are

the first to combine aspects of genetic variation from allele frequency spectrum, LD

and polymorphism levels within noncoding autosomal regions to infer the history of

human populations. Because our data set was collected without ascertainment, it

may be useful for validating the results of SNP genotyping surveys.
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3.2 Materials and methods

3.2.1 DNA samples and data collection

Sequence variation was surveyed in DNA samples from the same three human

populations investigated in Frisse et al. (2001): 15 Hausa from Yaounde (Cameroon),

15 individuals from Central Italy, and 15 Han Chinese from Taiwan. In addition, one

common chimpanzee DNA sample was also sequenced at each region. This study was

approved by the Institutional Review Board of the University of Chicago.

We selected 40 unlinked genomic regions for re-sequencing using the “locus pair”

approach (Frisse et al. 2001): for each unlinked region we sequenced two segments

of approximately 1 kb separated by approximately 8 kb. The selection of genomic

targets was aimed at regions that did not contain nor were tightly linked to known or

strongly predicted coding regions. Most surveyed segments also did not contain and

were not tightly linked to noncoding regions strongly conserved between human and

mouse (as determined by inspection of the VISTA genome browser). These regions

were selected as described in (Frisse et al. 2001) except that here we deliberately

included regions with a broader range of cross-over rates and %G+C content. The

local cM:Mb ratio was obtained based on the interval defined by the two closest

flanking markers on the Decode genetic map (Kong et al. 2002). The average and

variance of cM:Mb across the 50 segments (i.e., 40 new locus pairs and the 10 in

(Frisse et al. 2001)) are: 1.31 and 0.83. The average and variance of %G+C across

the 50 locus pairs are: 38.3 and 46.6. Detailed information on each surveyed segment

is provided in the Supporting Text. PCR and sequencing was performed as previously

described (Frisse et al. 2001; Wall et al. 2003). All sequencing reactions were run

on automated capillary sequencers (ABI3100 and ABI3700). Sequence reads were

scored using Polyphred (Nickerson et al. 1997); all putative polymorphisms and
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software-derived genotype calls were visually inspected and individually confirmed.

3.2.2 Testing demographic models

For each demographic model of interest, we performed a separate test for each

summary statistic of genetic variation. In addition, for some of the models (equi-

librium and bottleneck) we also calculated a test statistic, C, which combines the

p-values of multiple summary statistics as follows:

C = −2
k∑

i=1
ln(pi) (3.1)

where pi is the estimated p-value of the ith summary statistic of k summary statistics.

For models defined by more than one demographic parameter (i.e. simple growth

and bottleneck models), these tests were performed over a grid of parameter values.

The combinations of parameter values that are compatible with the observed values

of the test statistic(s) constitute the accepted portion of the parameter space for each

model. For simple growth models, the test was based on Fu and Li’s D∗ (Fu and Li

1993), whereas for bottleneck models, the test was based on combining p-values from

multiple summary statistics, as discussed below. The p-values, pi, for each individual

summary statistic were estimated from Monte Carlo simulations using a modification

of the program ms (Hudson 2002), as follows. We used coalescent simulations to

generate 50,000 replicates, each consisting of 50 independent locus pairs, for each

combination of parameter values; mutation and recombination rates were allowed

to vary across locus pairs as described below. Samples of sequences 10kb in length

were generated in which the intervening 8kb were ignored to mimic the locus pair

data. The probability, P , of observing a value greater than that found in the data

was estimated by simulations and converted to a two-tailed p-value by applying the
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formula 1− 2 · |0.5− P |.
The p-values for the combined test statistic C were estimated using the empirical

distribution of the statistic from simulations. For each combination of parameter

values, we record the values of each summary statistic in each replicate and generate

the distribution of these simulated values. For each replicate, we treat the value of

each summary statistic as the “observed” value and determine its p-value relative to

the empirical distribution from the remaining 49,999 replicates. For each replicate,

we combine these p-values to calculate a value of C. By following this procedure for

each of the 50,000 replicates (for a single demographic scenario of interest), we obtain

a distribution of the combined statistic. This distribution can be used to estimate a

one-tailed p-value for the observed value of C.

3.2.3 Mutation and recombination rate model

We assume an infinite sites model, where we model the variation in mutation

rate across locus pairs using a Gamma(12.46, 2.11 × 10−9) distribution. The mean

and variance for this distribution matched the observed mean and variance for the

mutation rates estimated based on human-chimpanzee sequence divergence in our

locus pair data (assuming 6 Mya since divergence and a generation time of 25 years).

The 90% central interval of this distribution is (1.54× 10−8, 3.96× 10−8) with Eµ =

2.63× 10−8.

We model the variation in the crossing-over rate, c, across locus pairs using a

Lognormal(-18.148, (0.5802)2) distribution; cross-over rate was assumed to be ho-

mogeneous within each locus pair. The 90% central interval of this distribution is

(.51 × 10−8, 3.41 × 10−8). The median of this distribution matched the overall re-

combination rate for the Hausa data (1.31× 10−8) based on the composite likelihood

estimator, ρ̂, of Hudson Hudson (2001). Because we cannot accurately estimate



53

the variance in recombination rate across surveyed segments as short as 10 kb, we

matched the variance of the Lognormal distribution to the variance of cM:Mb values

estimated from the Marshfield genetic map for the interval containing each locus pair

(Yu et al. 2001). We acknowledge that this model may capture some, but not all,

of the recombination rate variation estimated across the human genome (McVean

et al. 2004).

3.2.4 Summary statistics

We summarize the locus pair data in terms of the average Tajima’s D (D̄), the

variance of Tajima’s D (V̂ ar[D]), the average Fu & Li’s D∗ (D̄∗), the average number

of segregating sites (S̄), and the average nucleotide diversity across the 50 locus pairs

(π̄), as well as ρ̂, an overall estimate of the population crossing over parameter (4Nc),

as obtained by composite likelihood (Hudson 2001). Because there is not enough

information in our data to estimate accurately ρ̂ and the gene conversion parameters

(Ptak et al. 2004), we assume a model of gene conversion with rate (f) twice that

of cross-over and tract lengths exponentially distributed with mean (L) 500 bp and

estimate ρ̂. Alternative models of gene conversion (f=10, L=55 bp) based on sperm

typing data Jeffreys and May (2004) yielded qualitatively similar results (data not

shown).
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3.3 Results

3.3.1 Summaries of variation and tests of the equilibrium

model

We re-sequenced 40 unlinked locus pairs in 15 individuals from each of three pop-

ulation samples: Hausa, Italians, and Chinese. The results of this survey are analyzed

together with data for an additional 10 unlinked locus pairs previously re-sequenced

in the same population samples (Frisse et al. 2001), for a total of 50 unlinked locus

pairs. The average surveyed length per locus pair was 2,365 bp (for a total of 118,259

bp surveyed in each individual), and the average unsurveyed intervening segment was

7,921 bp long.

The values of summary statistics used for demographic testing are shown in Table

3.1, with a synopsis of the summary statistics for the 40 new locus pairs presented in

the Supporting Text (Table S1). The allele frequency spectrum was summarized by

the average and variance of Tajima’s D and Fu and Li’s D* across loci, polymorphism

levels are summarized by the average number of polymorphic sites (S̄) across loci,

and LD decay was summarized in terms of an overall composite likelihood estimator

of the population cross-over rate parameter ρ̂ (Hudson 2001). The results of this

expanded data set are in qualitative agreement with those from our previous survey

(Frisse et al. 2001) and with other similar data sets (Przeworski et al. 2000;

Wall and Przeworski 2000; Akey et al. 2004; Stajich and Hahn 2005). With

regard to the allele frequency spectrum, the Hausa show a skew towards rare variants

and a low variance across loci while both non-African samples have an excess of

intermediate frequency variants and high variance across loci. Also, polymorphism

levels and LD decay are higher in the Hausa compared to both non-African samples,
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but this difference is greater for LD decay (1.9- to 3.2-fold) than polymorphism levels

(1.6-fold).

In order to determine if the levels of LD decay and the frequency spectrum were

consistent with a model of constant population size, we conducted coalescent simula-

tions under equilibrium to determine the p-values of the observed summary statistics.

We obtained the effective population size, denoted NA, for each population using an

estimator of the population mutation rate parameter (4NAµ) based on the number of

polymorphic sites and sample size (Watterson 1975), and an estimate of µ based

on sequence divergence between human and chimpanzee for the 50 locus pairs. Each

summary statistic for the Hausa data is consistent with the equilibrium model (Ta-

ble 3.1). However, for the non-African populations, the skew towards intermediate

frequency variants and the elevated LD are incompatible with a simple equilibrium

model; a combined statistic based on D̄, V̂ ar[D], and ρ̂, obtained by using equation

3.1, is significant for both the Italian (p ≤ 0.0148) and Chinese data (p ≤ 0.0052).

Observed summary statistics

D̄ V̂ ar[D] D̄∗ S̄ π̄ (%) ρ̂

Hausa -0.20 0.55 -0.17 11.1 0.110 0.0006
Italian 0.28* 1.19** 0.18 7.1 0.085 0.0003
Chinese 0.18 1.08* 0.05 6.9 0.079 0.0002*

Table 3.1: Summaries are based on polymorphism data from 50 locus pairs. A desig-
nation of * or ** represents a p-value < 0.05 or 0.01, respectively, under an equilibrium
model.

3.3.2 Estimating NA under a growth model

Even though a model of constant population size could not be rejected for the

Hausa, human populations certainly experienced rapid growth recently and, perhaps,

also in more ancient times. Thus, the negative but nonsignificant values of Tajima’s
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D and Fu and Li’s D* in the Hausa may simply reflect limited power and suggest that

some expansion models are appropriate for this population. Following the approach in

(Pluzhinikov et al. 2002), we considered a model in which an ancestral population

at equilibrium size NA grows exponentially beginning tonset generations in the past

at rate α, such that the present population size is NAeαtonset Slatkin and Hudson

(1991). To test this model, we fixed the ancestral population size for each combination

of demographic parameter values, such that the expected number of segregating sites

matched the average number observed in the Hausa sample Pluzhinikov et al.

(2002).

Unlike in (Pluzhinikov et al. 2002), we estimated the best-fit growth parameters

for the Hausa data, α and tonset, along with the associated point estimate of NA, via

approximate maximum likelihood (ML) based on the summary statistic, Fu & Li’s

D∗. We focused on the average D∗ across the 50 locus pairs, denoted D̄∗
obs, as it was

previously shown to be the most informative for discriminating between equilibrium

and growth models (Pluzhinikov et al. 2002). For each demographic growth model,

we obtained distributions of D̄∗ by simulation, and estimated the probability that

|D̄∗ − D̄∗
obs| < 0.001, and then choose the model where this probability is highest.

We call this the approximate maximum likelihood estimate (MLE) of the growth

parameters, α and tonset, compatible with the Hausa data based on D̄∗
obs. Note

that we refer to this as approximate ML on a summary statistic, because we do not

use the full data, and because we approximate rather than obtain the probabilities

exactly. We found that the model with the highest overall probability was at an α of

0.75×10−3 and tonset of 1,000 generations; this corresponds to a model with ∼2–fold

growth starting 25,000 years ago, assuming a generation time of 25 years, from an

ancestral population size of 10,659. We present confidence sets of α and tonset for

which D̄∗
obs are consistent with the observed Hausa data in Figure 3.1. The span
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of acceptable models is consistent with previous reports (Pluzhinikov et al. 2002),

with a slight reduction in confidence set due to the inclusion of additional data.
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Figure 3.1: Confidence sets for pairs of parameters (tonset, α) based on the average
Fu & Li’s D∗ across 50 locus pairs for the Hausa sample. The contours represent the
confidence region of parameter space with p−values of 0.1, 0.05, 0.02, and 0.01 from
innermost to outermost. The parameter set which maximizes the likelihood of D̄∗

obs
is indicated by the arrow.

In order to asses the uncertainty in NA, we obtain a range of NA consistent with

the MLE of α̂ = 0.75× 10−3 and t̂onset = 1,000 as follows. We performed additional

coalescent simulations as described earlier, where we used the ML parameters for

the demographic history and gradually lowered or raised the value of NA until S̄

was incompatible with the observed data at the 5% level. We found these high and

low values of NA to be 9,450 and 12,300, respectively. Later, we will utilize this

information to assess the effect of our choice of NA in testing bottleneck models.
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Figure 3.2: Diagram of the bottleneck model. An ancestral population at equilibrium
size NA undergoes a reduction at time tstart generations in the past and remains
at a constant size b·NA for tdur generations; at time tstart − tdur generations ago
the population size recovers to size NA. The set of models include severities ranging
from b = 0.005, 0.05, 0.1, 0.15, 0.2, ..., 0.5, bottleneck durations ranging from tdur =
0, 100, 200, ..., tstart, and total demographic epochs of tstart = 20, 40, 80 and 120 kya.

3.3.3 Testing bottleneck models in the non-African data

The positive D̄ values and large V̂ ar[D] along with the low polymorphism and

high LD levels observed in the non-African populations (Table 3.1) suggest that mod-

els including a reduction in population size may be compatible with the data. We

considered one family of bottleneck models for these data, where a population of

constant size NA instantaneously shrinks in size to b · NA at time tstart generations

before the present. The population remains at that size for tdur generations and then

instantaneously recovers to its original size, as illustrated in Figure 3.2.

Under the assumption that non-African populations originated from an ancestral

population in Sub-Saharan Africa, we set the ancestral population size in the bottle-

neck simulations to the values of NA obtained by ML based on the Hausa data and

the simple growth model (NA = 10,659). This assumption has important implica-
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tions for our subsequent inferences about compatible bottleneck scenarios. We then

used coalescent simulations to estimate the p-values for each summary statistics, for

each point on a grid of bottleneck severities (b), bottleneck duration (tdur), and time

since the beginning of the bottleneck (tstart). This allows defining the portion of the

multidimensional parameter space that is compatible with the data.

By combining p-values of different summaries as described by equation [3.1], we

can make use of multiple aspects of the data to narrow the confidence region of

compatible parameter values. The value of such an approach is depicted in Figure

3.3. We found that, for all possible combinations of two or more summary statistics,

the combination of D̄-S̄-ρ̂ was the most powerful to discriminate between bottlenecks

and a constant size model, over the parameter range depicted in Figure 3.3. Therefore,

we use the combination of D̄-S̄-ρ̂ in our subsequent analyses of bottleneck models.

The confidence sets for the Italian and Chinese data for a tstart value of 40,000

years and NA = 10,659 are shown in Figure 3.4b,e; in all cases, the accepted portion of

the parameter space tends to lie on the diagonal of the plots indicating that bottleneck

severity and duration have inversely related effects on patterns of variation. The

Italian data are compatible with a range of bottleneck models that include shorter

and more severe bottlenecks (e.g., b = 0.1, tdur = 400 generations) at one end and

longer and milder bottlenecks (e.g., b = 0.4, tdur = 1600 generations) at the other.

If tstart = 80,000 years ago, this range is slightly shifted to the right, including both

longer and less severe bottlenecks (Supporting Text, Figure S4). For the Chinese

data, if tstart is 40,000 years, the compatible parameter space is similar to that of the

Italian data except that it includes slightly more severe bottleneck scenarios (Figure

3.4b,e). The most severe and longest bottleneck occurs where b = 0.005 and tdur =

300− 600 generations, but fewer combinations of parameter values corresponding to

mild bottlenecks are accepted. If tstart = 80,000 years, milder bottlenecks can not be
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Figure 3.3: Power of combining multiple summary statistics. The power to reject a
constant size demographic model for combined summaries with an NA of 10,659 under
bottleneck models with (a) a 70% reduction in NA and a total time of 40,000 years
for various tdur and (b) bottleneck duration of 20,000 years for a total demographic
epoch of 40,000 years for various bottleneck severities. The type-I error rate was held
at 5%.
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rejected, and even a long-lasting and mild bottleneck with b = 0.4 can not be rejected

(Figure 3.5). For NA = 10,659 and for any value of tstart, no bottleneck shorter than

100 generations is accepted in either population.

We also considered values for tstart of 20,000 and 120,000 years (Figures 3.6 and

3.7). In all cases, the lower tstart values showed a confidence set that was shifted

toward scenarios of longer and more severe bottlenecks. Conversely, at higher tstart

values, more severe bottlenecks were rejected in favor of milder bottleneck scenarios.

To assess the effect of the uncertainty associated with the estimates of NA, we

repeated the above analyses by using different values of NA, obtained from estimating

the uncertainty around NA from the Hausa ML growth models, described above.

As shown in Figures 3.4-3.7, the effect of NA on the accepted parameter space is

substantial. As expected, for the larger value of NA, the accepted portion of the

parameter space is reduced such that only relatively severe and long bottlenecks

are compatible with the data, whereas a larger range of less severe bottlenecks are

compatible with the smaller value of NA.

3.4 Discussion

By re-sequencing unlinked non-coding regions, we assessed patterns of polymor-

phism levels, frequency spectrum and LD for the same set of genomic segments and

population samples. To achieve greater resolution of different demographic scenarios,

we use an analytical approach that combines information from individual summary

statistics of sequence variation; computer simulations showed that combinations of

summaries allow for more powerful tests of each demographic scenario. Rather than

focusing on a single best-fitting demographic model, we construct an acceptance

region of the parameter space that is compatible with the demographic model of
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interest–in this case population growth or bottleneck–thus providing an inclusive pic-

ture of the uncertainty in inferences of human demography. A major new conclusion

of this analysis is that the non-African population samples are compatible with simple

bottleneck models even when multiple aspects of sequence variation are considered

simultaneously. Consistent with our previous analysis (Pluzhinikov et al. 2002),

the Hausa sample from Sub-Saharan Africa is compatible with both the equilibrium

model and with relatively recent population growth.

Modeling human population history is central to a variety of questions in human

biology, but most recently the search for signatures of natural selection has given

new importance to this line of inquiry (Akey et al. 2004; Stajich and Hahn 2005;

Jensen et al. 2005; Zhu and Bustamante 2005). The impact of natural selection

on the human genome can be detected by contrasting patterns of neutral variation, i.e.

those shaped solely by demography, to those observed at test loci that may be shaped

by natural selection in addition to demography. Traditionally, this contrast utilized

the theoretical predictions of the standard neutral model, in which the population

was assumed to be constant in size and randomly mating. However, studies of human

variation have shown genome-wide departures from this model suggesting that human

demography is complex (Wall and Przeworski 2000; Reich et al. 2002; Marth

et al. 2003; Adams and Hudson 2004). Thus, the development of a more realistic null

model of evolutionary neutrality is necessary for improving inferences about natural

selection (Akey et al. 2004; Stajich and Hahn 2005).

Several conditions must be satisfied to achieve these goals. One is the avail-

ability of sequence variation data for many unlinked and neutrally evolving regions.

While several whole genome variation data sets are available, these consist mainly

of genotyping data for ascertained polymorphisms (The International HapMap

Consortium 2003; Hinds et al. 2005). Re-sequencing data are also available, but
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they tend to focus on gene regions that may have been targets of selection and, hence,

are less suitable for demographic inference (Akey et al. 2004; Williamson et al.

2005; Stajich and Hahn 2005). An additional challenge derives from the complex-

ity of human demography and the fact that realistic models are defined by multiple

unknown demographic parameters. This implies that, for any given value of one

parameter (e.g. bottleneck severity), there may be a range of values for the other

parameters (e.g. time of onset and duration of bottleneck) that are equally consistent

with the data. It is particularly important in this context to make efficient use of the

information in the data. While it may be useful to generate point estimates of the

demographic parameters, it is even more important to obtain the multi-dimensional

confidence set if specific hypotheses about human evolution are to be tested.

The present study represents an important step toward improving our inferences

about human demography. Though the present data set is not as large as other re-

sequencing surveys (Akey et al. 2004; Stajich and Hahn 2005), it was specifically

designed for demographic inference and will provide a useful reference for analyses

of gene regions. This is because, in an attempt to select neutrally evolving regions,

we focused on segments that neither contain nor are tightly linked to coding regions.

Also, most of these segments neither contain nor are tightly linked to noncoding

sequences conserved between human and mouse. Our scheme for data collection

aimed at maximizing the information content of the data so that multiple aspects

of genetic variation could be analyzed for the same set of independent loci. Owing

to the use of ethnically identified samples, we could provide evidence for different

demographic histories in different populations.

Our analytical approach also improves on previous studies of human demography.

First, it provides a full characterization of the uncertainty around the best-fitting

model by identifying the portion of the multi-dimensional parameter space that is
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consistent with genetic variation data in each population. The inclusion of multiple

aspects of genetic variation by combining the p-values for different summary statis-

tics provides greater power than any single summary alone, allowing us to reduce

substantially the accepted space for each model. Our study is based on an exten-

sive exploration of the demographic parameter space including onset, duration, and

severity of the bottleneck. It is important to note that the reduction in bottleneck pa-

rameter space was greatly aided by our inference about NA based on the Hausa data.

Because the NA is restricted, the range of compatible values for summary statistics

that depend on NA (i.e. ρ̂ and S̄) is also constrained.

An important limitation of our analysis is that we considered only models of

randomly mating populations. Although this is a common assumption in modeling

studies of population size change, it is unlikely to be satisfied by human populations,

even if geographically defined (Rosenberg et al. 2002; Harding and McVean

2004). In fact, it is possible that population structure alone could account for the

observed patterns of human variation (Wall and Przeworski 2000; Wakely and

Lessard 2003; Akey et al. 2004; Stajich and Hahn 2005). Interestingly, the

addition of V̂ ar[D] into the bottleneck analysis results in a further reduction of the

accepted parameter space (Figures 3.8-3.11), even though combining this statistic

with D̄, S̄, and ρ̂ reduces the power to reject the constant size model (Figure 3.3).

This suggests that additional features, such as population structure, are required to

produce V̂ ar[D] values that are more consistent with our data. Though it is desirable

and certainly more realistic to include elements of population structure in models

of human demography (Wakeley et al. 2001), there is insufficient data to indicate

the most plausible family of such models. For these reasons, testing simple growth

and bottleneck models is a reasonable first step toward developing more complex and

realistic models. Obviously, if changes in population size and population structure
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were considered jointly rather than separately, the accepted range of values for the

growth and bottleneck parameters is likely to be different.

A main new conclusion of this study is that simple bottleneck models can explain

the non-African data even when multiple aspects of genetic variation are considered

simultaneously. Several previous studies of human sequence variation had modeled

specific bottleneck scenarios on the basis of either frequency spectrum information

(Wall and Przeworski 2000; Marth et al. 2004; Akey et al. 2004; Adams and

Hudson 2004; Stajich and Hahn 2005), LD decay (Reich et al. 2001), or polymor-

phism levels (Marth et al. 2003). Wall and Przeworski (Wall and Przeworski

2000) analyzed full re-sequencing data and proposed that a bottleneck and selective

sweeps at some loci could explain the frequency spectrum observed in non-Africans,

but did not provide information regarding the likely parameter values. The frequency

spectrum was used also by Marth et al. (Marth et al. 2004) to estimate a best-fit

bottleneck model for Europeans and East Asians. We used our simulation scheme to

estimate the probability of the Italian and Chinese data for the corresponding best-fit

models of Marth et al. (Marth et al. 2004). In our parameterization, the best fit

model for the Asian sample in Marth et al. corresponds to an NA of 10,000, b of 0.3,

tdur of 400 generations, a tstart of 90,000 years; note that this model includes growth

after the bottleneck to a size of 25,000. The best fit model for the European sample

in Marth et al. corresponds to an NA of 10,000, b of 0.2, tdur of 500 generations,

a tstart of 87,500 years, with growth after the bottleneck to a size of 20,000. Using

our simulation scheme, our data turned out to be incompatible with these models

(p < 0.0001). It should be noted, however, that Marth et al. (Marth et al. 2004)

analyzed a data set of ascertained SNPs and attempted to correct for the resulting

bias. Hence, the discrepancy between the two studies may be due to incomplete

ascertainment correction and highlights the value of re-sequencing data.
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Based on the frequency spectrum observed in a large re-sequencing study of genes

involved in inflammation, Akey et al. (Akey et al. 2004) concluded that the European

data was consistent with a bottleneck starting 40,000 years and a bottleneck intensity,

as measured by the inbreeding coefficient (F ), of 0.175. This best-fit model can be

translated to a range of models in our notation by using

F = 1−
(
1− 1

2 · b ·NA

)tdur
(3.2)

This bottleneck model corresponds to a number of points that are well within the

accepted portion of the parameter space for our non-African data (for example, b =

0.2 and tdur = 820 generations assuming our best-fit NA of 10,659). Because only the

best-fit model is reported by Akey et al. (Akey et al. 2004), the overall agreement

between these two data sets cannot be assessed.

Similar conclusions were obtained through an analysis of pairwise LD data of

ascertained SNPs in a European population sample (Reich et al. 2001); however, a

narrow portion of the parameter space was investigated. We determined that there are

points in our accepted parameter space that correspond to the estimated time of onset

and F reported by Reich et al. (Reich et al. 2001), indicating agreement between

the two methods and data sets. Finally, a recent analysis of re-sequencing data from a

pool of ethnically diverse samples detected evidence for very recent population growth

(Williamson et al. 2005). While this model is compatible with our Hausa data, it

does not provide a good explanation for the Italian and Chinese data, hence, pointing

to the need for population-specific demographic inferences.

3.5 Appendix: Bottleneck Figures
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Figure 3.4: Bottleneck confidence sets for tstart of 40,000 years. Results are shown
for the Italian (a, b, c) and Chinese (d, e, f) data sets for NA values of 9,450 (a, d),
10,659 (b, e), and 12,300 (c, f). The combined statistics are D̄–S̄–ρ̂. The contours
represent the confidence region of parameter space with p−values of 0.1, 0.05, 0.02,
and 0.01 from innermost to outermost.
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Figure 3.5: Bottleneck confidence sets for tstart of 80,000 years. Results are shown
for the Italian (a, b, c) and Chinese (d, e, f) data sets for NA values of 9,450 (a, d),
10,659 (b, e), and 12,300 (c, f). The combined statistics are D̄–S̄–ρ̂. The contours
represent the confidence region of parameter space with p−values of 0.1, 0.05, 0.02,
and 0.01 from innermost to outermost.
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Figure 3.6: Bottleneck confidence sets for tstart of 20,000 years. Results are shown
for the Italian (a, b, c) and Chinese (d, e, f) data sets for NA values of 9,450 (a, d),
10,659 (b, e), and 12,300 (c, f). The combined statistics are D̄–S̄–ρ̂. The contours
represent the confidence region of parameter space with p−values of 0.1, 0.05, 0.02,
and 0.01 from innermost to outermost.
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Figure 3.7: Bottleneck confidence sets for tstart of 120,000 years. Results are shown
for the Italian (a, b, c) and Chinese (d, e, f) data sets for NA values of 9,450 (a, d),
10,659 (b, e), and 12,300 (c, f). The combined statistics are D̄–S̄–ρ̂. The contours
represent the confidence region of parameter space with p−values of 0.1, 0.05, 0.02,
and 0.01 from innermost to outermost.
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Figure 3.8: Bottleneck confidence sets (including V̂ ar[D]) for tstart of 20,000 years.
Results are shown for the Italian (a, b, c) and Chinese (d, e, f) data sets for NA
values of 9,450 (a, d), 10,659 (b, e), and 12,300 (c, f). The combined statistics are

D̄–V̂ ar[D]–S̄–ρ̂. The contours represent the confidence region of parameter space
with p−values of 0.1, 0.05, 0.02, and 0.01 from innermost to outermost.
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Figure 3.9: Bottleneck confidence sets (including V̂ ar[D]) for tstart of 40,000 years.
Results are shown for the Italian (a, b, c) and Chinese (d, e, f) data sets for NA
values of 9,450 (a, d), 10,659 (b, e), and 12,300 (c, f). The combined statistics are

D̄–V̂ ar[D]–S̄–ρ̂. The contours represent the confidence region of parameter space
with p−values of 0.1, 0.05, 0.02, and 0.01 from innermost to outermost.
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Figure 3.10: Bottleneck confidence sets (including V̂ ar[D]) for tstart of 80,000 years.
Results are shown for the Italian (a, b, c) and Chinese (d, e, f) data sets for NA
values of 9,450 (a, d), 10,659 (b, e), and 12,300 (c, f). The combined statistics are

D̄–V̂ ar[D]–S̄–ρ̂. The contours represent the confidence region of parameter space
with p−values of 0.1, 0.05, 0.02, and 0.01 from innermost to outermost.
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Figure 3.11: Bottleneck confidence sets (including V̂ ar[D]) for tstart of 120,000 years.
Results are shown for the Italian (a, b, c) and Chinese (d, e, f) data sets for NA
values of 9,450 (a, d), 10,659 (b, e), and 12,300 (c, f). The combined statistics are

D̄–V̂ ar[D]–S̄–ρ̂. The contours represent the confidence region of parameter space
with p−values of 0.1, 0.05, 0.02, and 0.01 from innermost to outermost.



CHAPTER 4

INFERENCE USING JOINT SNP FREQUENCIES

4.1 Introduction

Historic changes in population size influence many characteristics of extant poly-

morphism, including levels of variation, the frequency spectrum, and linkage dise-

quilibrium. As a consequence, many analyses of polymorphism data, whether to

infer evolutionary forces such as selection (Haddrill et al. 2005; Akey et al. 2004;

Sabeti et al. 2002; Hudson et al. 1994) or to use linkage disequilibrium in associ-

ation mapping (Reich et al. 2002), are sensitive to assumptions about demography.

Therefore, there has been much interest in extracting information regarding demo-

graphic history from genetic data, especially with the availability of publicly accessible

population-specific resequencing data.

When making inferences regarding demographic history, it is advantageous to

include as much of the information contained in genetic data as possible. Full-

likelihood methods are available for data sets not subject to recombination (Beerli

and Felsenstein 2001; Kuhner et al. 1998; Nielsen 1999), however such meth-
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ods are not feasible when polymorphic sites are not completely linked. Therefore,

in the interest of computational feasibility, previous methods have focused on a sin-

gle summary of genetic data such as Tajima’s D (Wall and Przeworski 2000;

Pluzhinikov et al. 2002) or patterns of LD (Reich et al. 2001; Marth et al.

2003). An alternative strategy is to utilize multiple summaries of genetic data in ei-

ther a combined p-values (Voight et al. 2005) or approximate Bayesian (Thornton

and Andolfatto 2006) framework. Other recent methods have sought to incorpo-

rate more of the available information into demographic analyses while maintaining

computational efficiency by using maximum likelihood on the frequency spectrum of

unlinked polymorphic sites (Wooding and Rogers 2002; Polanski and Kimmel

2003; Marth et al. 2004) and adjusting confidence regions when linkage between

sites exists (Adams and Hudson 2004).

Here we present a method that represents a middle ground between full-likelihood

on nonrecombining regions and maximum likelihood on polymorphic sites that are

assumed to be unlinked. Our maximum likelihood method directly incorporates link-

age between polymorphic sites into the estimation of demographic parameters. We

summarize the joint frequency spectrum at a given locus with S segregating sites by

j = {j1, j2, . . . , jn−1}, where ji is the number of polymorphic sites where the derived

allele is at frequency i in a sample of n chromosomes and
∑n−1

i=1 ji = S. Note that this

summary of the data is identical to that described in Adams and Hudson (2004)

for a single locus. However, here we have a separate j for each locus since we directly

incorporate linkage between sites within a locus into our analysis. By using coalescent

simulations with recombination (Hudson 2002), we can estimate the probability of

an observed joint frequency spectrum for each locus on a grid of demographic pa-

rameter values and choose the combination of parameter values that maximizes the

product of this likelihood for a set of unlinked loci.
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We also present an extension of this method where the data may be summarized

in terms of the frequency and position of S linked segregating sites within a locus. In

this case, the data is summarized by p = {p1, p2, . . . , pS} and q = {q1, q2, . . . , qS},
where pi is the position, in base pairs, of the ith SNP, and qi is the frequency of the

ith SNP in the sample of n chromosomes.

Because this method utilizes coalescent simulations with recombination to deter-

mine the likelihood of the data under different demographic scenarios, including the

proper levels of recombination is critical to our analysis. Recombination rates are

typically estimated assuming a standard constant population size model. However,

violations of this standard model can result in a biased estimates of the population

crossing-over rate, ρ (=4Nr, where N is the ancestral population size in a changing

population size scenario). Specifically, such deviations lead to overestimates of ρ with

population growth and underestimates of ρ with population bottlenecks (Smith and

Fearnhead 2005). Therefore, in order to ensure that each demographic scenario is

accepted or rejected solely on the basis of demographic history and not recombination,

we adapt the approach of Hudson (2001) to obtain demography-specific composite

likelihood estimates of ρ for each data set as described in Smith and Fearnhead

(2005).

We apply our method to three data sets: African Hausa and Italian data sets pre-

viously published in Voight et al. (2005) and the European sample from the Seattle

SNPs data set (http://pga.gs.washington.edu). We find that the Hausa support a

history of very slow, very ancient growth as well as a range of more recent, rapid

growth scenarios. The confidence regions of the two European data sets indicate a

mild to moderate population bottleneck occurring ∼40,000-80,000 years ago.

In order to assess the utility of directly incorporating linkage into our analyses,

we compare our results from the Hausa and Seattle SNPs European data sets to
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the previous method of Adams and Hudson (2004), which summarizes the data by

the frequency spectrum. We refer to the Adams and Hudson (2004) method as a

composite likelihood method because it treats all sites as independent, regardless of

linkage. Additionally, we compare our results for the Italian data set to the results of

Voight et al. (2005), whose analysis utilized a combined statistic based on p-values

of Tajima’s D (Tajima 1989b), the number of segregating sites per locus, and an

estimate of the population crossing-over parameter, ρ (Hudson 2001).

4.2 Model and methods

4.2.1 Demographic model

For the Hausa data, we consider a growth model as described previously in Adams

and Hudson (2004). Under this model, a population is at a constant population size,

N0, until time T before the present. At time T , the population undergoes exponential

growth to a present size of Nrec. We define two demographic parameters of interest:

frec = Nrec/N0 and T , the time at which the exponential growth began, in units

of 4N0 generations before the present. Unless otherwise noted, we will assume an

ancestral population size of 10,000 and a generation time of 25 years when converting

our demographic time parameters to approximate year equivalents.

In analyzing the European data sets, we use a bottleneck model as described

in Voight et al. (2005). This is a simple bottleneck model where a population of

constant size, N0, instantaneously collapses to size b · N0 for a period of time and

then instantaneously recovers back to size N0. This model is defined by the time of

onset of the bottleneck, tstart, the duration of the bottleneck, tdur, and the severity

of the bottleneck, b.
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We assume an infinite-sites mutation model, with a mutation rate of u per gen-

eration. We also assume that the recombination rate per generation, r, is constant.

Estimates of θ (=4N0u) and ρ (=4N0r) per locus are determined as described later

in this section. For all analyses, the rate of gene conversion is assumed to be twice

that of crossing-over, and conversion tract lengths are exponentially distributed with

a mean of 500bp.

4.2.2 Maximum likelihood method

We first consider the case where data consists of a population survey of n chro-

mosomes at a single locus of length L (base pairs) that contains S segregating sites,

where we assume all segregating sites are biallelic. We do not consider ascertainment

bias, so we assume that the entire length of the locus is resequenced in each sampled

chromosome. The probability of the joint frequency spectrum, P (j), is a function of

the demographic parameters (frec and T or tstart, tdur, and b) as well as θ (=4N0u).

We will use d to denote the demographic parameters of interest, where d represents a

combination of either frec and T or tstart, tdur, and b. To estimate P (j), we generate

a large number of gene genealogies with recombination, and, for each genealogy, G, we

estimate P (j|G), the conditional probability of j given G. Our method for estimating

P (j|G) is described in the following paragraphs.

When the mutation rate per site, u, is small enough to disregard the possibility of

more than one mutation occurring in the sample at a single site, we can express P (j) in

terms of θ (=4N0u) and relative branch lengths of a gene genealogy. Each genealogy is

obtained by using coalescent simulations with recombination, as described previously

(Hudson 2002). We designate G to represent a single genealogical history, including

recombination events, simulated using specified values of θ, ρ, and d. Linkage between

sites results in a correlation between gene genealogies of each segment of a locus, where
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segments result from recombination events. If recombination events break up a locus

into M segments, and lm is the length of the mth segment in base pairs, then we

calculate

τ(G) =
M∑

m=1
(lm/L) · ψm (4.1)

where ψm is the total branch length of the gene tree, in units of 4N0 generations, for

segment m. The expected number of segregating sites in the sample is θτ(G).

A branch of this gene tree is defined to be an i-branch if a mutation that occurs

on that branch results in i copies of the mutation in the sample, and the sum of

the length of i-branches in the mth segment is denoted ψi,m. The total length of

i-branches in a single simulated replicate is then denoted by τi(G) and obtained by

summing the product of ψi,m and the segment length (lm/L) over all m segments, as

follows:

τi(G) =
M∑

m=1
(lm/L) · ψi,m . (4.2)

The expected number of segregating sites at frequency i in the sample is then θτi(G).

Then, conditional on the sample genealogy, ji is poisson distributed with mean θτi(G),

and

p(ji|G) =
θτi(G)jie−θτi(G)

ji!
. (4.3)

The conditional probability of the joint frequencies, j, is then

P (j|G) =
n−1∏

i=1
p(ji|G) (4.4)

for a single replicate, and the unconditional probability of j, P (j; d), is then
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P (j;d) = E[P (j|G)] (4.5)

which we estimate by

∑Y
y=1 P (j|Gy)

Y
, (4.6)

where P (j|Gy) denotes P (j|G) for the yth replicate genealogy generated under d, and

Y is the total number of replicates. We find that Y must be at least 2-4 million to

ensure a sufficiently smooth likelihood surface.

To obtain an approximate maximum likelihood estimate (MLE) of d (either frec

and T or tstart, tdur, and b), we evaluate P (j;d) over a rectangular grid of parameter

values and choose the combination of parameter values that maximizes the likelihood

of our observed data. A global estimate of P (j;d) for an entire data set may be

obtained by taking the product of P (j;d) obtained for individual loci.

If the ancestral or derived status of a polymorphism is not known, j can be folded

at frequency n/2, and a branch on a simulated gene genealogy is then an i-branch

if a mutation on that branch leads to either i or n − i copies of the mutation in the

sample. The product in equation [4.4] is then over i equals 1 to n/2.

4.2.3 Incorporating position and frequency information

In the analyses reported in this manuscript, we summarize the data in terms

of j and use the method described above. However, one may wish to incorporate

more of the available information in a data set and summarize the data in terms of

p= {p1, p2, . . . , pS} and q= {q1, q2, . . . , qS}, where pi and qi are the position and

frequency of the ith of S SNPs, respectively.

We use the same coalescent simulation with recombination scheme described



82

above. The total branch length of the sample gene genealogy for a given combination

of demographic parameters, τ(G), is given by equation 4.1. Again, recombination

events break a locus into M segments, each of length lm, and we now consider am

and zm to be the beginning and ending position of the mth segment, respectively.

We define λi(G) to be the total length of branches in a single gene genealogy,

G, where a mutation on any of those branches results in qi descendants at position

pi. Then, λi(G) is equal to ψqi,m (the sum of qi-branches in the mth segment) when

am ≤ pi ≤ zm. Therefore, the probability that a segregating site lies at position pi

and has frequency qi, conditional on the gene genealogy, G, is proportional to

p(pi, qi|G) = θλi(G) . (4.7)

Then, the probability density of a given position and frequency configuration, P (p,q|G),

is the product, over all S segregating sites, of the probability that a segregating site

lies at each position and frequency multiplied by the probability that there are no

other segregating sites, as follows:

P (p,q|G) = e−θτ(G)
S∏

i=1
p(pi, qi|G) . (4.8)

The unconditional probability, P (p,q;d), is then obtained by taking the average of

P (p,q|G) over a large number of replicate genealogies. As with the joint frequencies

method, a global P (p,q;d) may be obtained by taking the product of equation 4.8

over individual loci. An approximate MLE may then be obtained by evaluating

P (p,q;d) over a grid of d and choosing the d that maximizes P (p,q;d).

Due to computational requirements of both analysis of complex data sets and also

constructing confidence intervals, we choose to focus on the joint frequencies method

as opposed to this position/frequency extension in this manuscript. We did apply this
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frequency and position method to the Italian data set and found that the MLE is only

a single grid point away from the MLE obtained using our joint frequencies method.

However, we are not able to quantify the size of the confidence region associated with

this MLE as compared to the joint frequencies method.

4.2.4 Estimation of ρ under each demographic scenario

We assumed that the recombination rate is constant across loci in a data set and

used an extension of the composite likelihood estimator of Hudson (2001) to estimate

demography-specific values of ρ̂ for each data set. The maxdip program described in

Hudson (2001) utilizes sample configuration probability tables that are generated

by the ehnrho program, which uses coalescent simulations under a constant-size pop-

ulation model. We adapted the ehnrho program to accommodate the growth and

bottleneck models described above, allowing sample configuration probability tables

to be generated under each combination of parameter values. A separate value of ρ̂

was then estimated from each data set for each point in the demographic parameter

space by using maxdip with the appropriate sample configuration probability table.

The coalescent simulations required to obtain the likelihood of the joint frequency

spectrum at a given demographic scenario were then run with the value of ρ̂ specific

to that combination of parameter values. Both maxdip and ehnrho can be found at

http://home.uchicago.edu/∼rhudson1 .

4.2.5 Estimation of θ and grouping of loci

In order to reduce the dimensionality of parameter space to explore, we replaced

θ for a given locus in [4.3] with a simple moment estimator obtained by
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θ =
S/L

τ̄(d)
, (4.9)

where S is the number of segregating sites in a locus of length L and τ̄(d) is the

average length of a gene genealogy for a sample of n chromosomes under the specified

demographic parameters, d, measured in units of 4N0 generations. We can obtain an

estimate of τ̄(d) by using [4.1] and determining the average over many (≥ 100,000)

replicates.

In the interest of computational efficiency, we grouped loci of similar recombination

rate (length) and used one set of genealogies to estimate P (j;d) for all loci in a group,

reducing the total number of genealogies required to analyze a data set. Because the

loci in both the Hausa and Italian data sets are nearly uniform in length, we analyzed

all 50 loci in a single group with a single recombination rate for each population.

Since the Seattle SNPs loci are much more diverse in length, we assigned each locus

to one of 16 bins, which range from 5 to 85kb. We assigned loci longer than 85kb to

the 85kb bin and used only the first 85kb in our analysis.

4.2.6 Constructing confidence intervals

We can not assume that asymptotic approximation of confidence intervals is ap-

propriate for the Hausa and Italian data sets. In order to place confidence intervals

on our Hausa and Italian MLEs, we use coalescent simulations with recombination

(Hudson 2002) to simulate data that mimic the locus pair data structure. For each

population, we generate 1,000 loci for a sample of 30 chromosomes. Each locus is

∼10kb in length, and we ignore the middle ∼8kb to mimic the locus pair structure

(see Locus Pair Data Sets section of Results for further description). The demographic

parameters for these simulations are the MLEs for the Hausa and Italian data sets.
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We choose a value of θ for each population such that the expected number of segre-

gating sites in the ∼2kb at either end of the segment matches the average observed

number of segregating sites in each population.

We then generate 5,000 bootstrap replicate data sets by randomly sampling sets of

50 loci with replacement from the 1,000 simulated loci. For each bootstrap replicate,

we then apply our joint frequencies method, recording the ratio of the log-likelihood at

the MLE to the log-likelihood at the parameters from which the data were simulated.

Using this log-likelihood ratio distribution, we can estimate the 95% critical value

and construct confidence regions by including those parameter values where the log

likelihood ratio is less than the estimated 95% critical value.

4.3 Results

4.3.1 Locus pair data sets

We first consider two population samples from a data set described in Adams

and Hudson (2004) and Voight et al. (2005) obtained from an Italian and an

African Hausa population sample of 30 chromosomes each. The data set includes 50

unlinked “locus pairs”. Each locus pair consists of ∼1kb resequenced at either end of

a ∼10kb segment, as originally described in Frisse et al. (2001). In order to apply

our maximum likelihood method to both the Hausa and Italian data, we adapt our

simulations to ignore those segments which lie within the ∼8kb unsequenced region

when calculating the total branch length, τ , and length of i-branches, τi, in equations

[4.1], [4.2], and [4.9].
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Hausa analysis

We evaluate the Hausa data over a two-dimensional grid of frec and T parameter

values. Values of frec range from 1 (corresponding to constant population size) to 25

at intervals of 1, and values of T range from 0 to 10, at intervals of 0.00625 from 0 –

0.1, 0.1 from 0.1 – 1, and 1 from 1 – 10. Application of the joint frequencies maximum

likelihood method to this data set results in a maximum likelihood estimate (MLE)

of f̂rec = 3 and T̂ = 6. These parameters correspond to very slow, ancient three-fold

growth beginning approximately 6 million years ago.

We construct a 95% confidence region using the simulation scheme described

above. We estimate the 95% critical value to be 2.2 log likelihood units as com-

pared to the asymptotic approximation of 3.0 for two-dimensional MLEs, indicating

that asymptotic approximation would have been conservative for this particular data

set. The 95% confidence region constructed using the critical value of 2.2 is depicted

in Figure 4.1a. In order to assess the performance of our joint frequencies method,

we compare the 95% confidence regions obtained using this method to that of a prior

method. Figure 4.1b illustrates the previously published analysis of the Hausa data

set using the composite likelihood method described in Adams and Hudson (2004).

Italian analysis

We consider a three-dimensional grid of tstart, tdur, and b parameter values for

the Italian analysis to match the parameters in Voight et al. (2005). We consider

tstart values of 800, 1600, and 3200 generations, each with 9 tdur grid points evenly

spaced from 0 to tstart, inclusive. Values of b range from 0.05 to 0.5 at intervals of

0.05. We find that the MLE for this data set is tstart = 1600 generations, tdur =

1400 generations, and b = 0.2.
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(a)

(b)

Figure 4.1: Comparing Hausa confidence regions. The shaded area in each figure rep-
resents the 95% confidence region determined from simulation (a) Confidence region
using our joint frequencies method. MLE is f̂rec=3, T̂ = 6. (b) Confidence region
using the method of Adams and Hudson (2004). MLE is f̂rec=3.1, T̂ = 6.1. The
inset figures show a zoomed-out view of the main figures.
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We note that the previous analysis of this data set by Voight et al. (2005) benefits

from assuming an ancestral population size (NA) and mutation rate (µ) estimated

from external data. Therefore, to allow for more direct comparison between our joint

frequencies method and the combining p−values method of Voight et al. (2005), we

also apply our joint frequencies to the Italian data using a fixed value of θ (=4Nµ)

based on an NA of 10,659 and a mutation rate of 2.63× 108, as estimated in Voight

et al. (2005). By incorporating this additional information, our MLE is shifted slightly

to tdur = 1200 generations and b = 0.2.

In order to construct confidence intervals around the MLE, we estimate the 95%

critical value of the likelihood ratio statistic to be 3.3 for the Italian data set when a

value of θ is estimated for each locus. We also find the 95% critical value to be 2.6

when the fixed value of θ is used. We depict the confidence sets using the simulated

95% critical values for the Italian data set in Figures 4.2a,b. In comparison, Figure

4.2c depicts the 95% confidence region for the Italian data based on the analysis of

(Voight et al. 2005).

4.3.2 Seattle SNPs

We also apply our maximum likelihood method to the European population sam-

ple of the Seattle SNPs data, which can be found at the University of Washington-Fred

Hutchinson Cancer Research Center (UW-FHCRC) Variation Discovery Resource

(http://pga.gs.washington.edu). At the time we accessed this resource, the data con-

sisted of 215 loci containing a total of 13,130 SNPs. In our analysis, we included only

those SNPs that were successfully resequenced in the entire panel of 46 chromosomes.

Additionally, we exclude 8 loci that have been identified as genes subject to selection

in this data set by Akey et al. (2004). We also consider only those SNPs that do not

result in an amino acid coding change in order to minimize selection as a confounding
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Figure 4.2: Comparing Italian confidence regions. 95% confidence regions for tstart
values of 800, 1600, and 3200 generations are represented by dotted, solid, and dashed
lines, respectively. (a) Confidence regions using our joint frequencies method. MLE is
t̂start = 1600, t̂dur = 1400, b̂ = 0.2. (b) Confidence regions using our joint frequencies
method with a fixed value of θ = 0.00112/bp. MLE is t̂start = 1600, t̂dur = 1200,
b̂ = 0.2. (c) Confidence regions using the method of Voight et al. (2005) with an
ancestral population size of 10,659.
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factor in our analysis. Finally, in the interest of computational feasibility, we set the

maximum locus length to be 85kb. If a locus exceeds 85kb in length, we include

only the first 85kb in our analysis. The final data set that was used in the following

analyses contained 6,539 SNPs across 207 loci.

Seattle SNPs results

In order to determine how much additional information regarding demographic

history can be gleaned by directly incorporating linkage into the maximum likelihood

analysis, we compare our method based on joint SNP frequencies to the composite

likelihood method of Adams and Hudson (2004), which treats all SNPs as unlinked

and then accounts for linkage post hoc. In order to make a direct comparison, we first

re-analyze the Seattle SNPs data using the composite likelihood method of Adams

and Hudson (2004), since more data has been made available since the publishing

of that manuscript. Using the composite likelihood method on the expanded data

set, we find that the MLE for the Seattle SNPs European data set is t̂start = 3200

generations, t̂dur = 2800 generations and b̂ = 0.45. The 95% confidence region based

on the expanded data set is illustrated in Figure 4.3b, where the confidence region is

determined from simulation as described in Adams and Hudson (2004).

Because of the heterogeneity of locus lengths and number of loci in the Seattle

SNPs data set, our joint frequencies method is computationally expensive for this

data set; therefore, we are unable to explore the full three-dimensional parameter

space. Instead, we fix tstart at 3200 generations, which was the MLE value obtained

applying the method of Adams and Hudson (2004) to this data set. We also note

that the other tstart values considered using the composite likelihood method (800

and 1600 generations) are not contained in the 95% confidence region constructed for

the Seattle SNPs European data set as described above.
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With tstart fixed at 3200 generations, we then use our joint frequencies method

to evaluate the likelihood of the Seattle SNPs data set over a two-dimensional grid

of tdur and b values including tdur = 0 – 3200 at 200 generation intervals and b =

0.05 – 0.75 at 0.05 intervals. We find that the two-dimensional MLE using our joint

SNP frequencies method is t̂dur = 3200 and b̂ = 0.65, which corresponds to a 35%

reduction in effective population size that began approximately 80,000 years ago and

persists to the present day.

Because analysis of even a single data set of this size and complexity is compu-

tationally demanding, even in two dimensions, we are unable to use simulations to

construct confidence regions around our MLE as we did for the Hausa data set. How-

ever, Figure 4.3a provides an illustration of the likelihood surface resulting from our

joint frequencies method, where each contour represents an interval of 5 log likelihood

units from the maximum.

Bootstrap analysis

In order to further assess the uncertainty in our MLE for the Seattle SNPs Euro-

pean data set, we perform a bootstrap analysis on the 207 locus pairs. We generate

10,000 bootstrap replicates. To form a single bootstrap replicate, we randomly draw

a set of 207 loci, sampling with replacement from the 207 loci in the Seattle SNPs

data set. We then apply our joint frequencies method to each random “data set”

and record the MLE, thus producing a set of 10,000 MLEs distributed on our grid of

parameter values. Because we had recorded the P (j;d) for each individual locus at

each point in our demographic parameter space, this analysis requires no additional

coalescent simulations. We sort the grid points in our demographic parameter space

by the number of replicates that have each point as its MLE, from most to least. We

find that 95% of the replicate MLEs fall on points that have at least 180 replicates
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Figure 4.3: Comparing Seattle SNPs confidence regions. The third dimension, tstart
is fixed at 3200 generations. (a) Likelihood surface using our joint frequencies method.
MLE is t̂dur=3200, b̂ = 0.65. (b) Confidence region using the method of Adams and
Hudson (2004). MLE is t̂dur=2800, T̂ = 0.45. (c) Bootstrap analysis. MLEs for
95% of the 10,000 replicates fall on the points represented by the solid circles. These
points constitute a 95% credible region. The contours in (a) represent intervals of 5
likelihood units from the maximum, and the enclosed area in (b) represents the 95%
confidence region determined from simulation.
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with the same MLE, and use this cutoff to define a 95% credible region. Figure 4.3c

provides a visual representation of the bootstrap results, where the size of each point

indicates the number of replicates that had that combination of parameter values as

the MLE and the solid circles indicate those points that constitute the 95% credible

region.

4.4 Discussion

For the Hausa and Italian data sets, we find that the MLEs obtained using our

joint frequencies method lie within confidence regions constructed using methods

that utilize different summaries of the data. In analyzing the Hausa data, we confirm

previous results that indicate this data set is compatible with a model of constant

population size as well as slow, ancient growth and a range of recent growth scenarios

(Adams and Hudson 2004; Voight et al. 2005). The MLE of frec = 3 and T = 6 is

identical to that obtained using the method of Adams and Hudson (2004), although

the size of the confidence region around the joint frequencies MLE is slightly reduced.

In particular, more of the parameter space that includes recent growth scenarios is

now rejected in favor of demographic models that more closely resemble constant

population size.

In contrast, the joint frequency spectrum of the Italian data set is incompatible

with the constant-size model, instead indicating a bottlenecked history. The MLE

of tstart = 1600 generations, tdur = 1400 generations, and b = 0.2 approximately

corresponds to a 80% reduction in effective population size occurring 40,000 years

ago and lasting for 35,000 years before recovering back to the ancestral size. A range

of other bottleneck scenarios are compatible with the Italian data, including longer,

more mild bottlenecks beginning 80,000 years ago and shorter, more severe bottlenecks
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beginning 20,000 years ago (Figure 4.2a). Interestingly, the 95% confidence region of

the Italian data set does overlap with the 95% credible region of the Seattle SNPs for

a tstart value of 3200 generations, perhaps providing evidence in favor of the older

tstart value.

In analyzing the Seattle SNPs European data, the size and complexity of the

data set prevented us from applying our joint frequencies method to the full three-

dimensional parameter space. Therefore, we use fixed value of tstart = 3200 genera-

tions. This value was the MLE of tstart obtained by applying the method of Adams

and Hudson (2004) and also the only value of tstart considered that was contained

within the 95% confidence region (tstart values of 800 and 1600 generations were re-

jected for this data set using the method of Adams and Hudson (2004)). With

tstart fixed at 3200 generations, we find the two-dimensional MLE using the joint

frequencies method was tdur = 3200 and b = 0.65, which represents a 35% reduction

in effective population size occurring 80,000 years ago and persisting to the present.

We compared the results of our joint frequencies method to those of either the

composite likelihood method of Adams and Hudson (2004), which applies maximum

likelihood to the frequency spectrum of SNPs that are assumed to be unlinked, or the

combining p−values method of Voight et al. (2005), which constructs confidence

regions based on multiple aspects of genetic data. Each of these methods consider

linkage in their respective analyses: the composite likelihood method by using simula-

tions with recombination to adjust critical values and the combined p-values method

by calculating a combined test statistic that includes an estimated value of ρ. How-

ever, each of these methods utilizes a different summary of the data, and we use direct

comparison of confidence regions to evaluate the performance of the joint frequencies

method.

The main plots in Figures 4.1a and 4.1b illustrate that the joint frequencies method
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allows for rejection of some of the recent, rapid growth scenarios that would be ac-

cepted with the composite likelihood method. However, by comparing the main plots

in Figure 4.1a and 4.1b, it is clear that part of the confidence region obtained by

applying the joint frequencies method to the Hausa data set is nearly identical to

that of the composite likelihood method for ancient, slow growth scenarios. In fact,

the MLE of frec = 3 and T = 6 is nearly identical to that reported in Adams and

Hudson (2004) for this data set.

When comparing the results for the Italian data based on either the joint frequen-

cies method (Figure 4.2a) or the combined p-values method of Voight et al. (2005)

(Figure 4.2c), we find that the shapes of the confidence regions are similar. However,

the confidence region based on our joint frequencies method is more compact than

that based on combined p-values, particulary for a tstart value of 3200 generations. We

also note that the analysis of Voight et al. (2005) incorporates information regard-

ing ancestral population size (NA) and mutation rate (µ), while our joint frequencies

analysis requires no assumptions about the values of these parameters.

As a comparison, we also adjusted our method to incorporate information regard-

ing NA and µ by fixing a value of θ (=4N0µ) based on the estimates of Voight et al.

(2005). We find that the size of the confidence region obtained by using the joint

frequencies method is further reduced, while the MLE remains nearly the same (tdur

= 1200 generations and b = 0.2 with fixed θ versus tdur = 1400 generations and b =

0.2 with variable θ as described in Methods). We note, however, that the combined

p-values method of Voight et al. (2005) utilizes a slightly different simulation scheme

where recombination and mutation parameters are drawn from distributions rather

than fixed. Therefore, we can not fully evaluate the agreement between confidence

regions constructed using the two methods.

Due to the large number and heterogeneous lengths of loci in the Seattle SNPs



96

European data set, simulating confidence intervals around the MLE is computation-

ally infeasible. However, Figure 4.3a illustrates the shape of the likelihood surface

resulting from the joint frequencies method. Bootstrap analysis, depicted in Figure

4.3c, provides a sense of the uncertainty in the MLE. If we consider the points where

the MLEs of bootstrapped replicate data sets fall 95% of the time to be a 95% credible

region, it is clear that these points represent a smaller portion of parameter space than

the 95% confidence region constructed by using the composite likelihood method.

We note, however, that our Seattle SNPs MLE and the 95% credible region con-

structed using the joint frequencies method do not overlap with the 95% confidence

region obtained using the composite likelihood method. This suggests that our sim-

ple bottleneck model is not sufficient to explain the observed patterns of variation in

the Seattle SNPs data set. As a test, we applied a χ2-like goodness-of-fit test to the

frequency spectrum of the Seattle SNPs European data set as compared to the fre-

quency spectrum expected under the MLE parameters and obtained a goodness-of-fit

test statistic of 218.18. Because these sites are not independent, we can not use the

χ2 distribution to assess significance of this test statistic. Instead, we determined the

95% critical value of our test statistic by using simulations to account for linkage as

described in Adams and Hudson (2004). This simulated 95% critical value is 93.32,

indicating that the model defined by the MLE parameters can be rejected on the basis

of the frequency spectrum (p < 0.001)). This model does, however, represent an im-

provement over the standard constant-size model for this data set (χ2 = 322.97) . A

similar analysis of the Italian data set indicates that the Italian frequency spectrum

is consistent with the MLE parameters obtained by applying the joint frequencies

method to either the Italian data (χ2 = 26.05; p = 0.47) or the Seattle SNPs data

(χ2 = 26.05; p = 0.42).

The observation that the Italian data are compatible with both the Italian MLE
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as well as the Seattle SNPs European MLE while the Seattle SNPs European data are

not could suggest two possibilities. One is that the smaller size of the Italian data set

reduces power to reject these parameters. Also possible is that the Seattle SNPs data

are fundamentally different from the Italian data, indicating that different models

may be appropriate. To address whether the Italian data are significantly different

from the Seattle SNPs data, we first drew 5,000 random subsets of the Seattle SNPs

data, each subset matching the number of chromosomes, loci, and segregating sites

of the Italian data set. To create each subset, we randomly chose 15 individuals (30

chromosomes) from the 23 individuals sampled for the Seattle SNPs data set. We

then randomly sampled 50 loci from the 207 Seattle SNPs loci. Finally, we randomly

sampled 383 segregating sites from the subset of 50 loci in 30 chromosomes. For each

subset, we calculate our goodness-of-fit test statistic as described above. From the

distribution of subset test statistics, we find that test statistics as low as the observed

Italian test statistic of 26.05 are rarely observed (p = 0.0099), indicating that the

Italian data are significantly different from subsets of the Seattle SNPs European

data. This could suggest that the simple bottleneck model is sufficient for the Italian

data, while an adequate model for the Seattle SNPs data would require additional

components. The lack of fit of the Seattle SNPs data to our bottleneck model suggests

that conclusions about demographic history based on the Seattle SNPs MLE should

be drawn with caution.

We recognize that our model does not account for all features that may be im-

portant in shaping observed patterns of polymorphism, such as selection and popu-

lation structure. Unlike the locus pair data sets which are comprised of noncoding

loci far from genes, the Seattle SNPs European data set consists of coding loci im-

plicated in inflammatory response. While we exclude non-synonymous SNPs and

putative selected loci (Akey et al. 2004) from our analysis, it is still possible that
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selection could be a confounding factor in our analysis of this data set. Addition-

ally, we do not consider population structure in our analysis due to the additional

number of parameters that would be required and the difficulty in visualizing and

interpreting multi-dimensional parameter space. However, we note that our joint fre-

quencies method may be extended to accommodate additional model features such

as migration, population subdivision, or additional demographic epochs if sufficient

computational resources are available.

An additional factor we do not consider is recombination rate variation within or

among loci. Heterogeneous recombination rate has been shown to play an important

role in shaping observed patterns of genetic variation (Fearnhead and Smith 2005;

Myers et al. 2005; McVean et al. 2004). While we do not incorporate such variation

in our analyses, we note that this method could easily be extended to incorporate

variation in recombination rate among loci if a specific recombination model were

assumed.

We also note the importance of accounting for demographic history in estimating

ρ. We find that if a single value of ρ estimated under a standard constant popula-

tion size model were used as the ancestral ρ value for all grid points, there would

be an excess of recombination included in all analyses involving population growth

and a dearth of recombination in all bottleneck analyses. Inappropriate rejection of

demographic parameter space based on the level of recombination rather than an

incompatible demographic scenario results in a shift of confidence regions away from

those demographic histories where the ρ value estimated under a constant size model

is most different from the ρ value estimated under the correct demographic model,

such as very ancient growth models or long, severe bottlenecks (data not shown).

We find that application of maximum likelihood to joint SNP frequencies provides

more compact confidence regions as well as generally compatible MLEs in comparison
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to previous methods. The general agreement between the results obtained using the

joint frequencies method and previous methods further highlights the deficiency of

the standard neutral model in accounting for patterns of genetic variation in many

human populations. Additionally, the differences between parameters estimated for

each population underscores the need for population-specific demographic inference.

While simple demographic models may not completely account for observed genetic

data, they often represent an improvement over the standard constant size model.

However, as larger and more complex data sets become available, it is likely that

additional model features such as structure, selection, or variation in recombination

rate may be required to produce an adequate fit to the data.



CHAPTER 5

DEMOGRAPHY-SPECIFIC ESTIMATION OF ρ

5.1 Introduction

Levels of recombination have a direct impact on the extent of linkage disequilib-

rium (LD) across the genome, knowledge of which is critical for disease association

mapping efforts. Population genetic data contain information regarding historic re-

combination events. Therefore, much effort has been focused on using genetic data to

estimate the population crossing-over rate, 4Ner, where Ne is the effective population

size and r is the per generation recombination rate. We consider a collection of de-

mographic models that involve recent population size changes following a long-term

ancestral size of NA and consider estimation of ρ = 4NAr.

Approximate likelihood methods for estimating ρ typically assume a model of

constant population size (Li and Stephens 2003; Fearnhead and Donnelly 2002;

Hudson 2001). Application of such methods results in biased estimates of ρ when

populations deviate from the constant size model. In particular, growth scenarios tend

to result in overestimated values of ρ, and bottlenecks lead to underestimated values

100
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of ρ (Smith and Fearnhead 2005). Since the constant size model is not appropriate

for many populations, it is advantageous to incorporate demographic information into

estimates of ρ. Here we present a method to estimate ρ under various demographic

scenarios and evaluate the improvement in ρ estimates when proper demography is

incorporated.

5.2 Model and method

5.2.1 Demographic model

The demographic model used here is depicted in Figure 5.1, where a popula-

tion at constant size, NA, until time T at which it may experience an instantaneous

size change to an intermediate size Nint before immediately undergoing exponential

growth to the present size Nrec, as described in Adams and Hudson (2004). Param-

eters include frec, the ratio of the present population size to the ancestral population

size (Nrec/NA), fint, the ratio of the intermediate population size to the ancestral size

(Nint/NA), and T , the time of the instantaneous size change and/or onset of growth,

in units of 4NA generations. Note that models with an fint value of 1 indicate models

of growth beginning at time T with no intermediate size change. Additionally, sce-

narios of persistent bottleneck beginning at time T with no recovery can be modeled

by setting frec equal to fint. For converting times in units of 4NA generations to

year equivalents, we will use an ancestral population size of 10,000 and a 25 year

generation time.
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Figure 5.1: Demographic model.

5.2.2 Method

The composite likelihood method of Hudson (2001) is implemented in the maxdip

program. This program utilizes two-locus sample configuration probability tables to

estimate a constant value of ρ̂ based on diploid genotype data. These tables are

generated by the ehnrho program, which typically uses coalescent simulations under

the standard constant-size model. However, as noted by Smith and Fearnhead

(2005), ehnrho also allows for generation of the relevant probability tables under a

variety of demographic scenarios, including models of growth or bottlenecks. Both

maxdip and ehnrho can be found at http://home.uchicago.edu/∼rhudson1.

5.3 Results and discussion

Table 5.1 illustrates estimation of ρ under a range of growth models. Note that

the models in Table 5.1 where T is 0.00625 or 0.0125 are within the confidence set of
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Incorporating demography under growth models
Estimates of ρ (ρ̂)

frec fint T Standard Model Correct Demography θ̂w
ρ̂ /θ

ρ

10 1 0.00625 5.42 (4.21-6.62) 5.00 (3.91-6.12) 0.97 (0.76-1.23)
10 1 0.0125 5.83 (4.52-7.20) 4.97 (3.92-6.11) 0.94 (0.73-1.19)
10 1 0.0375 7.53 (5.90-9.38) 4.98 (3.97-6.11) 0.82 (0.64-1.04)
20 1 0.00625 5.42 (4.12-6.78) 4.98 (3.77-6.21) 0.97 (0.77-1.27)
20 1 0.0125 5.97 (4.57-7.43) 5.01 (3.88-6.21) 0.92 (0.73-1.19)
20 1 0.0375 7.92 (6.22-9.81) 5.00 (3.93-6.10) 0.80 (0.64-1.01)

Table 5.1: Average and (0.025 - 0.975) central interval of the distribution of ρ̂ and
θ̂w
ρ̂ /θ

ρ under growth models. Estimates of ρ̂ are obtained using maxdip with sample

configuration tables generated under either the standard constant size model (Stan-
dard Model) or the demographic parameters under which the data sets were simulated
(Appropriate Demography). Average and quantiles are based on 1,000 data sets gen-
erated via coalescent simulation (Hudson 2002) for a sample of 50 chromosomes,
each data set consisting of 50 loci that are each 10kb in length. The input value of
ρ is 0.5/kb and θ is chosen for each demographic scenario such that the expected
number of segregating sites per locus is equal to the number expected for θ = 1/kb
under the constant-size model.

demographic parameter values previously constructed for an African data set (Adams

and Hudson 2004). In these cases, the average value of ρ̂ is biased upward by

approximately 10-20% when using a sample configuration table generated under the

standard constant size model. In all growth models examined, ρ is overestimated

when the standard model is assumed. In general, the bias becomes more severe with

either a larger magnitude of growth or a more ancient time of onset. However, when

the demography-specific sample configuration tables are applied, the mean of the

distribution of ρ̂ values is at or near the true value of ρ in all cases, regardless of the

severity of the bias in ρ̂ when the standard constant size model is assumed.

We also consider models of population bottlenecks, where the population experi-

ences an instantaneous reduction in population size that persists to the present day.

Those models where frec = fint = 0.25 and T = 0.04 and also frec = fint = 0.5 and
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Incorporating demography under bottleneck models
Estimates of ρ (ρ̂)

frec fint T Standard Model Correct Demography θ̂w
ρ̂ /θ

ρ

0.25 0.25 0.04 1.50 (1.10-1.98) 5.00 (3.65-6.46) 2.12 (1.54-2.84)
0.25 0.25 0.08 1.00 (0.66-1.36) 4.98 (3.48-6.50) 2.61 (1.84-3.86)
0.5 0.5 0.04 3.07 (2.44-3.66) 4.93 (3.90-5.92) 1.34 (1.09-1.67)
0.5 0.5 0.08 2.58 (2.02-3.19) 4.93 (3.87-6.09) 1.46 (1.17-1.83)
1 0.25 0.04 3.25 (2.38-4.16) 4.96 (3.64-6.38) 1.29 (0.98-1.73)
1 0.25 0.08 3.06 (2.22-3.98) 4.97 (3.64-6.43) 1.31 (0.97-1.79)
1 0.5 0.04 4.09 (3.11-5.18) 4.92 (3.72-6.25) 1.14 (0.88-1.48)
1 0.5 0.08 4.00 (3.08-5.13) 4.98 (3.82-6.37) 1.13 (0.86-1.44)
10 0.25 0.04 5.66 (4.42-6.98) 4.96 (3.90-6.09) 0.95 (0.75-1.22)
10 0.25 0.08 6.92 (5.34-8.53) 4.97 (3.90-6.09) 0.86 (0.68-1.11)
10 0.5 0.04 6.76 (5.20-8.30) 4.96 (3.85-6.02) 0.86 (0.62-0.97)
10 0.5 0.08 8.61 (6.75-10.46) 4.98 (3.99-6.01) 0.77 (0.62-0.97)

Table 5.2: Average and (0.025 - 0.975) central interval of the distribution of ρ̂ and
θ̂w
ρ̂ /θ

ρ under bottleneck models. Details are as described in Table 5.1.

T = 0.08 have been shown to be compatible with non-African data sets (Voight

et al. 2005). In these scenarios, the average ρ̂ is biased downward by approximately

50-70% when the standard constant size model is assumed. For more complex models

that include a population size reduction followed by exponential growth, values of ρ

may be either over- or underestimated when the standard table is applied (Table 5.2).

Again, when the appropriate demographic history is considered, the distributions of

ρ̂ are very similar for all demographic scenarios examined, with the mean at or near

the true value of ρ.

A quantity of interest is θ
ρ , where θ = 4Neµ, ρ = 4Ner, and, therefore, θ

ρ equals µ
r ,

the ratio of the mutation rate to the crossing-over rate. Models to account for patterns

of polymorphism and divergence are often dependent on the parameters θ and ρ, both

of which are composite parameters which involve the effective population size, Ne,

a quantity about which we have little direct empirical information. However, we
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can obtain estimates of µ and r from divergence and genetic map data, respectively,

and, thus, the quantity µ
r can be at least roughly known. It is then interesting

to investigate both the accuracy of θ̂
ρ̂ estimated from population genetic data under

changing population size scenarios and also the agreement between population genetic

estimates of θ̂
ρ̂ and empirical estimates of µ

r .

In order to determine whether the quantity θ
ρ can be estimated accurately without

correcting for demography, we consider the ratio of θ̂w
ρ̂ /θ

ρ under the demographic sce-

narios considered above, where θ̂w is Watterson’s estimate of θ (Watterson 1975),

and ρ̂ is the value of ρ estimated under the standard constant size model. One might

hope that both θ̂w and ρ̂ might be biased in the same way under alternative demo-

graphic scenarios, and, thus, that the ratio might be relatively unbiased.

However, we find that, under growth models, the average ratio of θ̂w
ρ̂ /θ

ρ is less than

1, indicating that population growth tends to reduce levels of linkage disequilibrium

to a greater extent than it increases levels of polymorphism (Table 5.1). Like the

overestimation of ρ̂, the underestimation of θ̂w
ρ̂ /θ

ρ correlates with the severity of the

growth scenario, with larger values of frec and T resulting in greater bias.

The average of θ̂w
ρ̂ /θ

ρ under bottleneck models reveals the opposite trend (Ta-

ble 5.2). We find that θ̂w
ρ̂ /θ

ρ is overestimated under persistent bottleneck scenarios,

confirming that the increased levels of linkage disequilibrium caused by population

bottlenecks are greater than the concomitant decrease in polymorphism. Under more

complex models involving both bottleneck and growth, the bias in θ̂w
ρ̂ /θ

ρ depends on

both the severity of the bottleneck and the magnitude of growth (Table 5.2).

In order to examine the concordance between estimates of µ and r gleaned from

divergence and genetic map data, respectively, with corresponding estimates of θ and

ρ from population genetic data, we consider the Italian data set described in Voight

et al. (2005) as an illustration. For this data set, the average value of µ was found to
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be 2.63 × 10−8 based on human-chimpanzee divergence data, and the average value

of r was 1.42 × 10−8 based on the Marshfield genetic map, indicating a µ
r ratio of

1.85 (Voight et al. 2005).

If we estimate θ for the Italian data set by θ̂w and obtain ρ̂ using the standard

constant-size model, θ̂w is 8.1 × 10−4 and ρ̂ is 3.11 × 10−4. Thus θ̂w
ρ̂ is 2.60, which

is 1.4 times greater than the µ
r ratio estimated from divergence and genetic maps.

This is consistent with our simulation results that indicate θ̂w
ρ̂ is an overestimate of µ

r

under bottleneck scenarios such as those we believe are applicable to the Italian data

set.

However, we can incorporate the inferred demographic history of the Italian data

set into the estimate of µ
r . The parameter set of frec = 0.5, fint = 0.5, and T =

0.08 considered in Table 5.2 is one bottleneck scenario that has been shown to be

compatible with the Italian data. We can estimate θ under this demographic model

by using

θ̂∗w =
S/L

τ̄
, (5.1)

where S is the average number of segregating sites per locus, L is the average locus

length, and τ is the average length of a gene genealogy simulated under the afore-

mentioned demographic parameters. Likewise, ρ̂ can be estimated with incorporated

demographic information by using maxdip with the appropriate table as described

above. Using these approaches, we obtain a θ̂∗w of 1.05× 10−3 and ρ̂ of 6.08× 10−4,

indicating a µ
r ratio of 1.73, which is in much closer agreement with the empirical µ

r

ratio than the estimate obtained without accounting for demographic history. These

analyses suggest that both LD and levels of variation in the Italian data set are

compatible with a simple neutral model featuring a recent bottleneck.



CHAPTER 6

DISCUSSION AND CONCLUSIONS

6.1 Factors affecting accuracy and power

Application of the demographic inference methods detailed in the previous chap-

ters has yielded a number of important results. Highlighted in Chapter 2, the first of

these is the identification of factors affecting both the accuracy of demographic pa-

rameter estimates and also the power to reject the null model of constant population

size. Simulations reveal that estimates of growth parameters that are based on the

frequency spectrum of unlinked sites are influenced by both the magnitude of growth

and the time of growth onset. Estimates of frec, the ratio of the present population

size to the ancestral population size, are biased increasingly upward with increasing

values of frec. Interestingly, estimates of the time of onset of growth, T , improve with

increasing values of frec. Estimates of both frec and T improve with larger values of

T , which represent more ancient growth scenarios.

Additionally, power analyses indicate that the power to reject the null hypothesis

of constant population size increases with both the magnitude of growth and the time
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of onset of growth. Sample size and number of unlinked polymorphic sites also play a

significant role, as recent, rapid growth scenarios can not be consistently distinguished

from constant population size with small sample sizes (< 100 chromosomes and ∼500

unlinked polymorphic sites), regardless of the magnitude of growth.

These results suggest that, while the frequency spectrum contains information

regarding historic changes in population size, the accurate extraction of this infor-

mation depends upon the magnitude and timing of such events. This highlights the

need for incorporation of additional aspects of genetic data as described in Chapters

3 and 4, particularly for recent, rapid growth scenarios which show the largest bias in

frec and T estimation and the lowest power to reject the null model of constant pop-

ulation size. Additionally, these results and others presented in Chapter 2 provide a

guide to researchers who may be interested the accuracy of parameter estimates they

might obtain from a data set consisting of a particular number of chromosomes and

segregating sites.

6.2 Inference methods

Another notable contribution of the preceding chapters is the introduction and ap-

plication of the demographic inference methods detailed in Chapters 2-4. Some major

features of each of these methods are summarized in Table 6.1. Chapter 2 presents

a composite likelihood method that utilizes the frequency spectrum of polymorphic

sites. As indicated above, simulations indicate that the accuracy of this method de-

pends upon the underlying demographic scenario, although accurate estimates can

be made for most demographic parameters if a sufficient number of chromosomes

and segregating sites is available. This method treats all polymorphic sites as in-

dependent, regardless of linkage. However, a procedure is also presented by which
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Summary of methods

CL CPV JFS

Computational cost Low Medium High
Includes ρ and µ Variation No Yes No

Major Advantage Very Can combine Small confidence
efficient any summaries regions

Major Disadvantage Ignores linkage Influenced by Computational
in estimation estimate of NA expense

Table 6.1: The methods summarized here are the Composite Likelihood (CL) method
described in Chapter 2, the Combining p-values (CPV) method described in Chapter
3, and the Joint Frequency Spectrum (JFS) method described in Chapter 4.

simulations can be used to construct confidence regions around MLEs obtained using

this method. Some major advantages of this method include this ease of adjusting

for linkage as well as both computational efficiency and use of the entire frequency

spectrum as opposed to a single summary statistic such as Tajima’s D.

A novel approach to considering multiple aspects of genetic data is taken in Chap-

ter 3. Power analyses show that a combined summary statistic based on the average

Tajima’s D value, the average number of segregating sites, and an estimate of ρ over

all loci of a data set provides the greatest power to distinguish bottleneck scenarios

from the standard model of constant population size. This method is more compu-

tationally demanding than the aforementioned composite likelihood method because

large numbers of coalescent simulations are required to assess the significance of the

combined test statistic over a grid of demographic parameters. However, this method

does allow for incorporation of information regarding the ancestral population size

and also considers levels of variation as well as linkage disequilibrium. These features

makes this method ideal for studies such as the one described in Chapter 3, which

utilizes multiple population samples and employs a data collection scheme that allows

for simultaneous assessment of both polymorphism and linkage.
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Finally, Chapter 4 details a method that summarizes the data in terms of joint

frequencies of linked SNPs. Although this method represents data in a way similar to

the composite likelihood method of Chapter 2, the joint frequencies method directly

incorporates linkage into the demographic analyses by using coalescent simulations

with recombination as opposed to simple one-site coalescent simulations. In all cases

examined, the confidence region surrounding estimates obtained using the joint fre-

quencies method is smaller than that of either the composite likelihood or combined

p-values method described above. Additionally, this method may be applied either

with or without making assumptions regarding the ancestral population size and mu-

tation rate. However, there is significant computational cost for applying this method

to large data sets consisting of loci of heterogeneous length.

Although each of these methods has been used to infer specific demographic pa-

rameters that relate to population size changes, it is important to note that any

of these methods may be adapted to models that include population structure or

additional demographic epochs. Additionally, the composite likelihood and joint fre-

quencies methods may easily be modified to accommodate recombination or mutation

rate heterogeneity between loci, although the combined p-values method already in-

cludes these features as described in Chapter 3. While the choice of method may

depend largely on computational resources or the structure of an individual data set,

such flexibility allows for accommodation of new information regarding the values and

distributions of nuisance parameters, such as the mutation or recombination rate, or

the demographic models that may be of interest to particular researchers.
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6.3 Consistency of population-specific estimates

An additional important result is the consistency of demographic parameter es-

timates for similar data sets across different described methods. As described in

Chapters 2 and 4, an African Hausa data set was analyzed by using two of the three

demographic inference methods described above as well as by using maximum like-

lihood on a single summary statistic, Fu and Li’s D∗, in Chapter 3. The maximum

likelihood estimate indicated very ancient, very slow three-fold growth beginning ap-

proximately six million years ago when either the composite likelihood or the joint

frequencies method was applied. A range of recent growth scenarios as well as constant

population size were also accepted, where the parameters within the joint frequencies

confidence region were a subset of those within the composite likelihood confidence

region. Additionally, the MLE for this data set obtained by using D∗ as described in

Chapter 3 lies within the confidence regions of both the composite likelihood and joint

frequencies methods. The results for the composite likelihood and joint frequencies

methods are summarized in Table 6.2.

The case is similar for the Italian data set, which was analyzed using the com-

bined p-values method in Chapter 3 and the joint frequencies method in Chapter 4.

A series of bottleneck models, with bottleneck onset times from 20,000 to 120,000

years ago, was included in the acceptance region constructed using the combined

p-values method. Again, the confidence region constructed using the joint frequen-

cies method included a subset of the parameter space accepted using the combined

p-values method. Specifically, the MLE obtained using the joint frequencies method

indicates an 80% reduction in effective population size occurring 40,000 years ago and

persisting for 35,000 years before recovering to the ancestral size. This estimate lies

within the combined p-values acceptance region.
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Summary of MLEs

Data Set Method f̂rec f̂int T̂ † t̂
‡
start t̂

‡
dur b

Hausa
CL 3.1 1 6.1
JFS 3 1 6

SSNPs African American

CL§ 1.9 1 0.27

SSNPs European‖
CL 2.0 0.15 0.0375

SSNPs European]

CL§ 3200 2800 0.25

JFS§ 3200 3200 0.65
Italian

JFS 1600 1400 0.2

Table 6.2: The results summarized here are obtained using the Composite Likelihood
(CL) method described in Chapter 2 and the Joint Frequency Spectrum (JFS) method
described in Chapter 4.

† Parameter is in units of 4NA generations.
‡ Parameter is in units of generations.
§ Estimates were found to be incompatible with the observed frequency spectrum.
‖ Data set is as described in Chapter 2.
] Data set is as described in Chapter 4.
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The third data set that was examined using more than one of the methods de-

scribed above is the Seattle SNPs European data set, which was evaluated using the

composite likelihood method of Chapter 2 and the joint frequencies method of Chapter

4. In this case, the acceptance regions are similar, but not overlapping. As described

in the following section, this discrepancy could be due to the simple bottleneck model

being inadequate for the Seattle SNPs data.

6.4 Consistency with palaeontological record

In addition to the consistency of estimates across methods, it is also interesting

to consider the consistency of these estimates with the fossil record. For the African

Hausa data set, the MLE estimates of very ancient, slow growth scenarios are not

likely to be biologically relevant. However, some more recent, rapid growth models

that also lie within the confidence regions constructed using each of the methods

described above are consistent with an African population expansion occurring 70-

80kya as posited by Mellars (2006).

The genetic evidence for a population bottleneck, as seen in the Italian, Chinese,

and Seattle SNPs European data, is also supported by the fossil record. The earliest

modern skeletal remains outside Africa, dating from 115 kya, have been found in

Israel (Skhul and Qafzeh caves in the Levant region) (Stringer 2003). However, it

is hypothesized that these anatomically modern populations that originally dispersed

from Africa were replaced with more technologically and behaviorally advanced popu-

lations which dispersed from Africa approximately 60,000 years ago (Mellars 2006).

Such a dispersal could be reflected by the MLE parameters corresponding to a

population bottleneck estimated for the non-African populations examined in this

dissertation. In the combining p-values analyses, both the Italian and Chinese data
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sets are shown to be compatible with a range of bottleneck scenarios, including those

beginning 3200 generations ago, which corresponds to 64 kya if a generation time of

20 years is assumed. Additionally, the Seattle SNPs European data set is also shown

to be most compatible with a bottleneck beginning 3200 generations ago, although

the simple bottleneck model can not be accepted as a complete explanation of the

Seattle SNPs European data.

6.5 Compatibility of MLEs with observed data

In addition to noting the general consistency of the demographic estimates men-

tioned above, both with each other and with the fossil record, it is also important

to consider whether the inferred parameter values are compatible with the observed

patterns of variation. The demographic models discussed in the preceding chapters

are simple growth or bottleneck models, and it is interesting to examine whether these

simple models resolve any incompatibility with the standard neutral model without

invoking any additional features such as selection or population structure.

In Chapters 2 and 4, a χ2-like goodness of fit test was performed to determine

whether the frequency spectra expected under the inferred demographic parameters

are significantly different from the observed frequency spectra. In the case of the

Hausa data, both the MLE parameters and the parameters corresponding to constant

population size were compatible with the Hausa frequency spectrum, with the MLE

growth parameters producing a slightly improved fit.

In contrast, the confidence regions for the Italian data set (using either the com-

bined p-values or joint frequencies method) do not include parameters corresponding

to constant population size, instead including parameters that represent a bottleneck

scenario. While the Italian data set is incompatible with the constant-size model, the
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MLE parameters identified by the joint frequencies method provide a good fit to the

data, as application of the goodness-of-fit test described above indicates that the fre-

quency spectrum expected under the MLE bottleneck parameters is not significantly

different from the observed Italian frequency spectrum.

However, similar goodness-of-fit analyses of the Seattle SNPs data sets do not in-

dicate compatibility with simple demographic scenarios. In Chapter 2, the composite

likelihood MLE obtained for the Seattle SNPs African American data set was rejected

by the goodness-of-fit test, even though the MLE growth model represented an im-

provement over the constant population size model. For the Seattle SNPs European

data set first described in Chapter 2, the frequency spectrum expected under the com-

posite likelihood MLE was compatible with the observed data. However, in Chapter

4, a larger amount of data for the Seattle SNPs European data set was available.

Using the expanded data set, it was shown that the joint frequencies MLE parame-

ters produce an expected frequency spectrum that is significantly different from the

observed Seattle SNPs frequency spectrum.

6.6 Effect of data on demographic inference

The observation that the Hausa and Italian observed frequency spectra are consis-

tent with their respective MLEs while those of the Seattle SNPs are not underscores

the importance of data sets specifically tailored to demographic inference. All of

the data sets examined in the preceding chapters are a result of full resequencing

efforts. Such data are critical for demographic analyses, which rely on the accurate

capture of low frequency variants. Additionally, the Hausa and Italian data sets are

obtained from clearly defined, relatively homogeneous population samples and con-

sist of noncoding regions that are far from known or predicted genes and regions
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conserved between human and mouse, reducing the potential influence of selection on

the observed patterns of variation.

The Seattle SNPs data, on the other hand, are not ideal for demographic studies.

First, these data consist of coding loci that have been implicated in inflammatory

response. Despite the removal of coding SNPs and several putative selected loci

from the analyses, it is possible that selection is a confounding factor in the Seattle

SNPs demographic analyses. Additional features such as population structure could

also contribute to the poor fit of the Seattle SNPs data to the frequency spectra

predicted by the MLEs, particularly for the African American data set. If meaningful

conclusions are to be drawn from data sets such as the Seattle SNPs, then more

complex demographic models which incorporate features such as population structure,

migration, or selection are likely to be required.

6.7 Demography and ρ

A final development reported in this dissertation is a method of incorporating de-

mographic information into estimation of recombination rate, as described in Chapter

5. Simulation analyses confirm that deviations from the standard constant size model

result in bias of ρ estimates when the standard model is assumed. Specifically, sce-

narios of growth lead to overestimates of ρ̂ and population bottlenecks result in un-

derestimates of ρ̂. However, when the appropriate demographic history is considered,

the bias in ρ̂ is eliminated.

The ratio of θ̂w
ρ̂ is also considered, as it is often assumed to represent the ratio

of the mutation rate to the recombination rate, even under changing population size

scenarios. The results of Chapter 5, however, illustrate that estimates of θ and ρ made

under the assumption of constant population size are not biased to the same degree
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under alternate demographic scenarios, and, as a result, θ̂w
ρ̂ is often not an accurate

representation of the mutation to recombination rate ratio when the population size

is not constant. Since many studies, including those detailed in this dissertation, have

illustrated that the constant population size model is not consistent with many data

sets, these results suggest that it is appropriate to incorporate information regarding

demographic history into estimates of ρ.
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